<>
html {
color: #000;
background: #fff;
}
body,
div,
dl,
dt,
dd,
ul,
ol,
li,
h1,
h2,
h3,
h4,
h5,
h6,
pre,
code,
form,
fieldset,
legend,
input,
textarea,
p,
blockquote,
th,
td {
margin: 0;
padding: 0;
}
table {
border-collapse: collapse;
border-spacing: 0;
}
fieldset,
img {
border: 0;
}
address,
caption,
cite,
code,
dfn,
em,
strong,
th,
var,
b {
font-: normal;
font-weight: normal;
}
ol,
ul {
list-: none;
}
caption,
th {
text-align: left;
}
h1,
h2,
h3,
h4,
h5,
h6 {
font-size:100%;
font-weight:normal;
}
pre {
white-space: pre;
white-space: pre-wrap;
word-wrap: break-word;
}
abbr,
acronym {
border:0;
font-variant:normal;
}
/*
* 1. Addresses CSS quotes not supported in IE6/7
* 2. Addresses quote property not supported in S4
*/
/* 1 */
q {
quotes: none;
}
/* 2 */
q:before,
q:after {
content: '';
content: none;
}
/*
* Prevents sub and sup affecting line-height in all browsers
* gist.github.com/413930
*/
sub,
sup {
font-size: 75%;
line-height: 0;
position: relative;
vertical-align: baseline;
}
sup {
top: -0.5em;
}
sub {
bottom: -0.25em;
}
/*
* links
*/
/*
* Addresses outline displayed oddly in Chrome
*/
a:focus {
outline: thin dotted;
}
/*
* Improves readability when focused and also mouse hovered in all browsers
* people.opera.com/patrickl/experiments/keyboard/test
*/
a:hover,
a:active {
outline: 0;
}
/*
* form
*/
/*
* 1. Corrects color not being inherited in IE6/7/8/9
* 2. Corrects text not wrapping in FF3
*/
legend {
border: 0; /* 1 */
white-space: normal; /* 2 */
color:#000;
}
button,
input,
select,
textarea {
font-family:inherit;
font-size:inherit;
font-weight:inherit;
vertical-align: baseline;
*vertical-align: middle;
}
/*
* Addresses FF3/4 setting line-height on 'input' using !important in the UA sheet
*/
button,
input {
line-height: normal; /* 1 */
}
/*
* 1. Improves usability and consistency of cursor between image-type 'input' and others
* 2. Corrects inability to clickable 'input' types in iOS
* 3. Removes inner spacing in IE7 without affecting normal text inputs
* Known issue: inner spacing remains in IE6
*/
button,
input[type="button"],
input[type="reset"],
input[type="submit"] {
cursor: pointer; /* 1 */
-webkit-appearance: button; /* 2 */
*overflow: visible; /* 3 */
}
/*
* 1. Addresses box sizing set to content-box in IE8/9
* 2. Removes excess padding in IE8/9
* 3. Removes excess padding in IE7
Known issue: excess padding remains in IE6
*/
input[type="checkbox"],
input[type="radio"] {
box-sizing: border-box; /* 1 */
padding: 0; /* 2 */
*height: 13px; /* 3 */
*width: 13px; /* 3 */
}
/*
* Removes inner padding and border in FF3+
* www.sitepen.com/blog/2008/05/14/the-devils-in-the-details-fixing-dojos-toolbar-buttons/
*/
button::-moz-focus-inner,
input::-moz-focus-inner {
border: 0;
padding: 0;
}
/*
* FF3的一些版本hidden没有隐藏
*/
input[type="hidden"] {
display: none!important;
}
/*
* 1. Removes default vertical scrollbar in IE6/7/8/9
* 2. Improves readability and alignment in all browsers
* 3. 不让textarea可以resize
*/
textarea {
overflow: auto; /* 1 */
vertical-align: top; /* 2 */
resize: none; /* 3 */
}
/*
* font
*/
/*
* 1.333为默认行高16px(16/12),去除sans-serif防止ie8\9下字体变形
*/
body {
min-width: 1280px;
height:100%;
font: 12px/1.333 "\5FAE\8F6F\96C5\9ED1""Hiragino Sans GB"arial,helvetica,clean;
}
select,
input,
button,
textarea {
font:100% arial,helvetica,clean;
}
table {
font-size: inherit;
font: 100%;
}
/*
* Corrects font family set oddly in IE6S4/5Chrome
* en.wikipedia.org/wiki/User:Davidgothberg/Test59
*/
pre,
code,
kbd,
samp {
font-family: monospaceserif;
_font-family: 'courier new'monospace;
font-size: 100%;
line-height: 100%;
}
small {
font-size: 75%;
}
.clearfix::after {
content: "";
display: block;
height: 0;
visibility: hidden;
clear: both;
}
>
两角和三角公式推导
两角和公式是三角函数推导中的重要工具,掌握其证明方法能帮助理解三
角函数的深层联系。下面通过三种不同方法详细推导两角和的正弦、余弦公式,
最后拓展到正切公式的应用。
方法一:几何构造推导法
想象在单位圆中,角度α和β分别从
x
轴正方向逆时针旋转得到射线
OA
和
OB
。构造点
A(cos
α
,sin
α
)
、
B(cosβ,sinβ)
,将
OB
绕原点顺时针旋转α角度
得到新点
C(cos(
β
-
α
),sin(
β
-
α
))
。
观察三角形
OAC
与
OBD
(
D
点为
(1,0)
)
,利用三角形全等关系可得:
cos(α+β) = cosαcosβ
-
sinαsinβ
sin(α+β) = sinαcosβ + cosαsinβ
关键证明步骤:
1.
建立旋转前后的坐标对应关系
2.
通过几何对称性建立等式
3.
解方程得到最终表达式
该方法优势在于直观展示角度叠加的几何意义,但需要较强的空间想象能
力。
方法二:向量点积推导法
设向量
u
与
x
轴夹角为α,向量
v
夹角为β。根据向量点积公式:
u·v = |u | |v |cosθ
取单位向量时:
cos(β
-
α) = cosαcosβ + sinαsinβ
调整角度符号即得
cos(
α
+
β
)
表达式
向量叉积的模长对应正弦关系:
|u×v | = |u | |v |sinθ
展开计算得
sin(
α
+
β
)
关系式
这种推导方式体现向量运算的简洁性,但需要学习者具备向量基础知识。
方法三:欧拉公式推导法
利用复数指数形式: