×

注意!页面内容来自https://blog.csdn.net/a8039974/article/details/157292153,本站不储存任何内容,为了更好的阅读体验进行在线解析,若有广告出现,请及时反馈。若您觉得侵犯了您的利益,请通知我们进行删除,然后访问 原网页

优化器中的学习率(Learning Ratelr):全面详解

一、什么是学习率?

1.1 基本定义

学习率(lr) 是深度学习优化过程中控制参数更新步长大小的超参数。它决定了模型在每次迭代中沿着损失函数梯度反方向移动的“距离”。

以最简单的随机梯度下降(SGD)为例,参数更新公式为:

θt+1=θt−lr⋅∇θL(θt) \theta_{t+1} = \theta_t - \text{lr} \cdot \nabla_\theta \mathcal{L}(\theta_t) θ

确定要放弃本次机会?
福利倒计时
: :

立减 ¥

普通VIP年卡可用
立即使用
参与评论 您还未登录,请先 登录 后发表或查看评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

浩瀚之水_csdn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
点击重新获取
扫码支付
< type="text/css">
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值