×

注意!页面内容来自https://radars.ac.cn/article/doi/10.12000/JR25073,本站不储存任何内容,为了更好的阅读体验进行在线解析,若有广告出现,请及时反馈。若您觉得侵犯了您的利益,请通知我们进行删除,然后访问 原网页

以通信为中心的通感一体化信号设计:研究现状与展望

唐爱民 刘凡 袁伟杰 杨杰 王书涵 兰岚 余显祥 冯志勇 金石

唐爱民刘凡袁伟杰等. 以通信为中心的通感一体化信号设计:研究现状与展望[J]. 雷达学报(中英文)202514(4): 1019–1045. doi: 10.12000/JR25073
引用本文: 唐爱民刘凡袁伟杰等. 以通信为中心的通感一体化信号设计:研究现状与展望[J]. 雷达学报(中英文)202514(4): 1019–1045. doi: 10.12000/JR25073
TANG AiminLIU FanYUAN Weijieet al. Signal design for communication centric ISAC: state of art and future aspects[J]. Journal of Radars202514(4): 1019–1045. doi: 10.12000/JR25073
Citation: TANG AiminLIU FanYUAN Weijieet al. Signal design for communication centric ISAC: state of art and future aspects[J]. Journal of Radars202514(4): 1019–1045. doi: 10.12000/JR25073

以通信为中心的通感一体化信号设计:研究现状与展望

DOI: 10.12000/JR25073 CSTR: 32380.14.JR25073
基金项目: 国家自然科学基金(62331023),广东省基础与应用基础研究基金(2024A1515011218)
详细信息
    作者简介:

    唐爱民,博士,助理研究员,主要研究方向为B5G/6G网络、通信感知一体化技术、全双工通信

    刘 凡,博士,研究员,主要研究方向为6G无线通信、通信感知一体化、低空无线网络

    袁伟杰,博士,副研究员,主要研究方向为正交时频空间调制、通信感知一体化、车联网

    杨 杰,博士,讲师,主要研究方向为通信感知一体化、毫米波通信、人工智能

    王书涵,硕士生,主要研究方向为通信感知一体化技术

    兰 岚,博士,副教授,主要研究方向为雷达探测、信号与信息智能处理、阵列通感一体化技术

    余显祥,博士,副教授,主要研究方向为雷达探测与成像、信号处理、人工智能

    冯志勇,博士,教授,主要研究方向为下一代通信网络、频谱感知、通信感知一体化

    金 石,博士,教授,主要研究方向为无线通信理论、随机矩阵理论、信息论

    通讯作者:

    刘凡 [email protected]

    责任主编:唐波 Corresponding Editor: TANG Bo

  • 中图分类号: TN92

Signal Design for Communication Centric ISAC: State of Art and Future Aspects

Funds: The National Natural Science Foundation of China (62331023)The Guangdong Basic and Applied Basic Research Foundation (2024A1515011218)
More Information
  • 摘要: 近年来,通信感知一体化技术受到学术界和工业界的广泛关注,被视为6G网络的关键技术之一。考虑到通信基础设施的广泛部署,将感知功能集成到通信系统中以构建通信感知一体化网络成为研究的重点。为此,以通信为中心的通感一体化信号设计成为首要解决的关键技术问题。以通信为中心的信号设计有两种主要技术路线:(1)基于导频进行感知的信号设计;(2)基于数据进行感知的信号设计。该文对以上两种信号设计的技术路线进行了深入而系统的阐述,其中对基于导频进行感知的信号设计的现有文献进行了全面综述,并对基于数据进行感知的信号设计进行了梳理,最后对通感一体化信号设计的未来研究方向进行了展望。

     

  • 图  1  通感一体化系统模型

    Figure  1.  System model for ISAC

    图  2  导频在OFDM帧结构中的插入结构

    Figure  2.  The pilot structures in OFDM frames

    图  3  不同导频插入模式对应的模糊峰以及不模糊检测范围示意

    Figure  3.  The ambiguous peak and unambiguous detection area for different pilot structures

    图  4  接收OFDM符号的时间轴

    Figure  4.  The timeline for received OFDM symbols

    图  5  OFDM信号的均方ACF及其相干积累示意图

    Figure  5.  The average squared AFC and corresponding coherent integration versions of an OFDM signal

    图  6  SCCDMA和OFDM调制信号的ACF及其相干积累示意图

    Figure  6.  The average squared ACF and corresponding coherent integration versions of SCCDMAand OFDM signals

    图  7  PCS技术在随机ISAC信号设计中的应用实例

    Figure  7.  An illustrative example of the PCS technique for random ISAC signals

    图  8  OFDM调制下使用16-QAM星座的两目标距离估计性能和距离像

    Figure  8.  The range estimation performance and profiles of two targets under OFDM with 16-QAM constellation

    表  1  基于现有通信导频的感知方法

    Table  1.   Summarization of sensing methods based on existing communication reference signals

    通信标准 感知所用信号 感知架构 参考文献
    IEEE 802.11p DSRC 单站感知 [43,44]
    DSRC + ISM频段 单站感知 [43]
    SM 单站感知 [45]
    IEEE 802.11ad Preamble 单站感知 [4650]
    SLS 双站感知 [5153]
    4G LTE CSRS等各种参考信号 \ [5457]
    5G NR SSB等各种参考
    信号
    \ [58,59]
    所有信号 双站感知 [60,61]
    SSB 单站+双站感知 [62]
    双站感知 [63]
    SSB+SIB1 单站感知 [64]
    DMRS 单站感知 [65]
    双站/多站感知 [66]
    PRS 单站感知 [6769]
    CSI-RS + DMRS 双站感知 [70]
    单站感知 [71]
    CSI-RS + DMRS + PRS 单站感知 [72]
    PRS + DMRS 单站感知 [73,74]
    下载: 导出CSV

    表  2  面向通感一体的感知信号优化方法

    Table  2.   Summarization of optimization methods of ISAC sensing signals

    优化目的 通信性能指标 感知性能指标 优化对象 参考文献
    最大化感
    知性能
    通信速率 MI 载波功率 [101]
    功率 CRLB 载波功率 [102]
    \ CRLB 载波数量和位置 [103]
    \ 估计误差 参考信号 [104]
    最大化通
    感性能
    有效信道容量 估计误差 载波数量和功率 [105]
    排队长度 Age of information 雷达模式 [106]
    速率 FI 载波功率 [107]
    SER CRLB 载波功率 [108]
    最小化功率 速率 MI 载波位置和功率 [109]
    速率 MI 载波位置和功率 [110]
    速率 SNR 参考信号间隔
    和功率
    [81,111]
    下载: 导出CSV

    表  3  典型亚高斯星座的峰度值

    Table  3.   Kurtosis values of typical sub-Gaussian constellations

    星座 峰度
    PSK 1.0000
    16-QAM 1.3200
    64-QAM 1.3810
    128-QAM 1.3427
    256-QAM 1.3953
    512-QAM 1.3506
    1024-QAM 1.3988
    2048-QAM 1.3525
    下载: 导出CSV
  • [1] SAAD WBENNIS Mand CHEN Mingzhe. A vision of 6G wireless systems: Applicationstrendstechnologiesand open research problems[J]. IEEE Network202034(3): 134–142. doi: 10.1109/MNET.001.1900287.
    [2] PAULRAJ A J and KAILATH T. Increasing capacity in wireless broadcast systems using distributed transmission/directional reception (DTDR)[P]. US53455991994.
    [3] FISHLER EHAIMOVICH ABLUM Ret al. MIMO radar: An idea whose time has come[C]. 2004 IEEE Radar ConferencePhiladelphiaUSA2004: 71–78. doi: 10.1109/NRC.2004.1316398.
    [4] HUGHES P K and CHOE J Y. Overview of advanced multifunction RF system (AMRFS)[C]. 2000 IEEE International Conference on Phased Array Systems and TechnologyDana PointUSA2000: 21–24. doi: 10.1109/PAST.2000.858893.
    [5] ROBERTON M and BROWN E R. Integrated radar and communications based on chirped spread-spectrum techniques[C]. IEEE MTT-S International Microwave Symposium DigestPhiladelphiaUSA2003: 611–614. doi: 10.1109/MWSYM.2003.1211013.
    [6] STURM C and WIESBECK W. Waveform design and signal processing aspects for fusion of wireless communications and radar sensing[J]. Proceedings of the IEEE201199(7): 1236–1259. doi: 10.1109/JPROC.2011.2131110.
    [7] LIU FanCUI YuanhaoMASOUROS Cet al. Integrated sensing and communications: Toward dual-functional wireless networks for 6G and beyond[J]. IEEE Journal on Selected Areas in Communications202240(6): 1728–1767. doi: 10.1109/JSAC.2022.3156632.
    [8] 刘凡袁伟杰原进宏等. 雷达通信频谱共享及一体化: 综述与展望[J]. 雷达学报202110(3): 467–484. doi: 10.12000/JR20113.

    LIU FanYUAN WeijieYUAN Jinhonget al. Radar-communication spectrum sharing and integration: Overview and prospect[J]. Journal of Radars202110(3): 467–484. doi: 10.12000/JR20113.
    [9] ITU. Framework and overall objectives of the future development of IMT for 2030 and beyond[R]. ITU-R M.2160-02023.
    [10] 3GPP. Study on integrated sensing and communication[R]. TR 22.8372024.
    [11] XIONG YifengLIU FanCUI Yuanhaoet al. On the fundamental tradeoff of integrated sensing and communications under Gaussian channels[J]. IEEE Transactions on Information Theory202369(9): 5723–5751. doi: 10.1109/TIT.2023.3284449.
    [12] XIONG YifengLIU FanWAN Kaiet al. From torch to projector: Fundamental tradeoff of integrated sensing and communications[J]. IEEE BITS the Information Theory Magazine20244(1): 73–90. doi: 10.1109/MBITS.2024.3376638.
    [13] ZHANG ZhengyuHE RuisiAI Boet al. A general channel model for integrated sensing and communication scenarios[J]. IEEE Communications Magazine202361(5): 68–74. doi: 10.1109/MCOM.001.2200420.
    [14] LUO ChenhaoTANG AiminGAO Feiet al. Channel modeling framework for both communications and bistatic sensing under 3GPP standard[J]. IEEE Journal of Selected Areas in Sensors20241: 166–176. doi: 10.1109/JSAS.2024.3451411.
    [15] QI ChenhaoCI WeiZHANG Jinminget al. Hybrid beamforming for millimeter wave MIMO integrated sensing and communications[J]. IEEE Communications Letters202226(5): 1136–1140. doi: 10.1109/LCOMM.2022.3157751.
    [16] WANG XinyiFEI ZesongZHANG J Aet al. Partially-connected hybrid beamforming design for integrated sensing and communication systems[J]. IEEE Transactions on Communications202270(10): 6648–6660. doi: 10.1109/TCOMM.2022.3202215.
    [17] ZHAO QiminTANG AiminWANG Xudonget al. Joint transmit and receive beamforming for integrated bistatic radar sensing and MU-MIMO communications[C]. The 98th Vehicular Technology ConferenceHong KongChina2023: 1–6. doi: 10.1109/VTC2023-Fall60731.2023.10333698.
    [18] TANG AiminWANG Xudongand ZHANG J A. Interference management for full-duplex ISAC in B5G/6G networks: Architectureschallengesand solutions[J]. IEEE Communications Magazine202462(9): 20–26. doi: 10.1109/MCOM.001.2300654.
    [19] LI SongqianLUO ChenhaoTANG Aiminet al. Integrating passive bistatic sensing into mmWave B5G/6G networks: Design and experiment measurement[C]. IEEE International Conference on CommunicationsRomeItaly2023: 2952–2957. doi: 10.1109/ICC45041.2023.10279065.
    [20] HASSANIEN AAMIN M GZHANG Y Det al. Dual-function radar-communications: Information embedding using sidelobe control and waveform diversity[J]. IEEE Transactions on Signal Processing201664(8): 2168–2181. doi: 10.1109/TSP.2015.2505667.
    [21] TEMIZ MHORNE CPETERS N Jet al. An experimental study of radar-centric transmission for integrated sensing and communications[J]. IEEE Transactions on Microwave Theory and Techniques202371(7): 3203–3216. doi: 10.1109/TMTT.2023.3234309.
    [22] MA DingyouSHLEZINGER NHUANG Tianyaoet al. FRaC: FMCW-based joint radar-communications system via index modulation[J]. IEEE Journal of Selected Topics in Signal Processing202115(6): 1348–1364. doi: 10.1109/JSTSP.2021.3118219.
    [23] HUANG TianyaoSHLEZINGER NXU Xingyuet al. MAJoRCom: A dual-function radar communication system using index modulation[J]. IEEE Transactions on Signal Processing202068: 3423–3438. doi: 10.1109/TSP.2020.2994394.
    [24] ZHENG LeLOPS MELDAR Y Cet al. Radar and communication coexistence: An overview: A review of recent methods[J]. IEEE Signal Processing Magazine201936(5): 85–99. doi: 10.1109/MSP.2019.2907329.
    [25] 余显祥姚雪杨婧等. 面向感知应用的通感一体化信号设计技术与综述[J]. 雷达学报202312(2): 247–261. doi: 10.12000/JR23015.

    YU XianxiangYAO XueYANG Jinget al. Radar-centric DFRC signal design: Overview and future research avenues[J]. Journal of Radars202312(2): 247–261. doi: 10.12000/JR23015.
    [26] JAMIL MZEPERNICK H Jand PETTERSSON M I. On integrated radar and communication systems using Oppermann sequences[C]. 2008 IEEE Military Communications ConferenceSan DiegoUSA2008: 1–6. doi: 10.1109/MILCOM.2008.4753277.
    [27] WU KaiZHANG J AHUANG Xiaojinget al. Integrating low-complexity and flexible sensing into communication systems[J]. IEEE Journal on Selected Areas in Communications202240(6): 1873–1889. doi: 10.1109/JSAC.2022.3156649.
    [28] MA DingyouSHLEZINGER NHUANG Tianyaoet al. Joint radar-communication strategies for autonomous vehicles: Combining two key automotive technologies[J]. IEEE Signal Processing Magazine202037(4): 85–97. doi: 10.1109/MSP.2020.2983832.
    [29] MA DingyouSHLEZINGER NHUANG Tianyaoet al. Spatial modulation for joint radar-communications systems: Designanalysisand hardware prototype[J]. IEEE Transactions on Vehicular Technology202170(3): 2283–2298. doi: 10.1109/TVT.2021.3056408.
    [30] LIU FanZHOU LongfeiMASOUROS Cet al. Toward dual-functional radar-communication systems: Optimal waveform design[J]. IEEE Transactions on Signal Processing201866(16): 4264–4279. doi: 10.1109/TSP.2018.2847648.
    [31] LIU XiangHUANG TianyaoSHLEZINGER Net al. Joint transmit beamforming for multiuser MIMO communications and MIMO radar[J]. IEEE Transactions on Signal Processing202068: 3929–3944. doi: 10.1109/TSP.2020.3004739.
    [32] LIU FanLIU YafengLI Anget al. Cramér-Rao bound optimization for joint radar-communication beamforming[J]. IEEE Transactions on Signal Processing202270: 240–253. doi: 10.1109/TSP.2021.3135692.
    [33] HUA HaochengHAN Tongxiaoand XU Jie. MIMO integrated sensing and communication: CRB-rate tradeoff[J]. IEEE Transactions on Wireless Communications202423(4): 2839–2854. doi: 10.1109/TWC.2023.3303326.
    [34] 马丁友刘祥黄天耀等. 雷达通信一体化: 共用波形设计和性能边界[J]. 雷达学报202211(2): 198–212. doi: 10.12000/JR21146.

    MA DingyouLIU XiangHUANG Tianyaoet al. Joint radar and communications: Shared waveform designs and performance bounds[J]. Journal of Radars202211(2): 198–212. doi: 10.12000/JR21146.
    [35] BARNETO C BLIYANAARACHCHI S DHEINO Met al. Full duplex radio/radar technology: The enabler for advanced joint communication and sensing[J]. IEEE Wireless Communications202128(1): 82–88. doi: 10.1109/MWC.001.2000220.
    [36] PROAKIS J G and SALEHI M. Digital Communications[M]. 5th ed. New York: McGraw-Hill2008.
    [37] ZHANG YumengADITYA Sand CLERCKX B. Input distribution optimization in OFDM dual-function radar-communication systems[J]. IEEE Transactions on Signal Processing202472: 5258–5273. doi: 10.1109/TSP.2024.3491899.
    [38] DERRYBERRY R TGRAY S DIONESCU D Met al. Transmit diversity in 3G CDMA systems[J]. IEEE Communications Magazine200240(4): 68–75. doi: 10.1109/35.995853.
    [39] BEMANI AliKSAIRI Nand KOUNTOURIS M. Affine frequency division multiplexing for next generation wireless communications[J]. IEEE Transactions on Wireless Communications202322(11): 8214–8229. doi: 10.1109/TWC.2023.3260906.
    [40] HADANI RRAKIB STSATSANIS Met al. Orthogonal time frequency space modulation[C]. 2017 IEEE Wireless Communications and Networking ConferenceSan FranciscoUSA2017: 1–6. doi: 10.1109/WCNC.2017.7925924.
    [41] COHEN D and ELDAR Y C. Sub-nyquist radar systems: Temporalspectraland spatial compression[J]. IEEE Signal Processing Magazine201835(6): 35–58. doi: 10.1109/MSP.2018.2868137.
    [42] BRAUN MSTURM Cand JONDRAL F K. Maximum likelihood speed and distance estimation for OFDM radar[C]. 2010 IEEE Radar ConferenceArlingtonUSA2010: 256–261. doi: 10.1109/RADAR.2010.5494616.
    [43] REICHARDT LSTURM CGRÜNHAUPT Fet al. Demonstrating the use of the IEEE 802.11P Car-to-Car communication standard for automotive radar[C]. 2012 6th European Conference on Antennas and PropagationPragueCzech Republic2012: 1576–1580. doi: 10.1109/EuCAP.2012.6206084.
    [44] USMAN MAZHER KSHIMIZU THEATH R Wet al. Automotive radar using IEEE 802.11p signals[C]. 2018 IEEE Wireless Communications and Networking ConferenceBarcelonaSpain2018: 1–6. doi: 10.1109/WCNC.2018.8377043.
    [45] KIHEI BCOPELAND J Aand CHANG Yusun. Design considerations for vehicle-to-vehicle IEEE 802.11p radar in collision avoidance[C]. 2015 IEEE Global Communications ConferenceSan DiegoUSA2015: 1–7. doi: 10.1109/GLOCOM.2015.7417441.
    [46] KUMARI PGONZALEZ-PRELCIC Nand HEATH R W. Investigating the IEEE 802.11ad standard for millimeter wave automotive radar[C]. 2015 IEEE 82nd Vehicular Technology ConferenceBostonUSA2015: 1–5. doi: 10.1109/VTCFall.2015.7390996.
    [47] KUMARI PCHOI JGONZÁLEZ-PRELCIC Net al. IEEE 802.11ad-based radar: An approach to joint vehicular communication-radar system[J]. IEEE Transactions on Vehicular Technology201867(4): 3012–3027. doi: 10.1109/TVT.2017.2774762.
    [48] KUMARI PELTAYEB M Eand HEATH R W. Sparsity-aware adaptive beamforming design for IEEE 802.11ad-based joint communication-radar[C]. 2018 IEEE Radar ConferenceOklahoma CityUSA2018: 923–928. doi: 10.1109/RADAR.2018.8378684.
    [49] MUNS G RMISHRA K VGUERRA C Bet al. Beam alignment and tracking for autonomous vehicular communication using IEEE 802.11ad-based radar[C]. IEEE Conference on Computer Communications WorkshopsParisFrance2019: 535–540. doi: 10.1109/INFCOMW.2019.8845121.
    [50] LIU LinglinJU HonghaoFANG Xuminget al. Systematic design of radar detection under IEEE 802.11ad framework[C]. 2021 IEEE 94th Vehicular Technology ConferenceNormanUSA2021: 1–5. doi: 10.1109/VTC2021-Fall52928.2021.9625293.
    [51] GROSSI ELOPS MVENTURINO Let al. Opportunistic automotive radar using the IEEE 802.11ad standard[C]. 2017 IEEE Radar ConferenceSeattleUSA2017: 1196–1200. doi: 10.1109/RADAR.2017.7944386.
    [52] GROSSI ELOPS MVENTURINO Let al. Opportunistic radar in IEEE 802.11ad networks[J]. IEEE Transactions on Signal Processing201866(9): 2441–2454. doi: 10.1109/TSP.2018.2813300.
    [53] GROSSI ELOPS Mand VENTURINO L. Adaptive detection and localization exploiting the IEEE 802.11ad standard[J]. IEEE Transactions on Wireless Communications202019(7): 4394–4407. doi: 10.1109/TWC.2020.2983032.
    [54] EVERS A and JACKSON J A. Analysis of an LTE waveform for radar applications[C]. 2014 IEEE Radar ConferenceCincinnatiUSA2014: 0200–0205. doi: 10.1109/RADAR.2014.6875584.
    [55] EVERS A and JACKSON J A. Cross-ambiguity characterization of communication waveform features for passive radar[J]. IEEE Transactions on Aerospace and Electronic Systems201551(4): 3440–3455. doi: 10.1109/TAES.2015.140622.
    [56] DAN YangpengWAN XianrongYI Jianxinet al. Ambiguity function analysis of Long Term Evolution transmission for passive radar[C]. 2018 12th International Symposium on AntennasPropagation and EM TheoryHangzhouChina2018: 1–4. doi: 10.1109/ISAPE.2018.8634255.
    [57] BLÁZQUEZ-GARCÍA RCASAMAYÓN-ANTÓN Jand BURGOS-GARCÍA M. LTE-R based passive multistatic radar for high-speed railway network surveillance[C]. 2018 15th European Radar ConferenceMadridSpain2018: 6–9. doi: 10.23919/EuRAD.2018.8546516.
    [58] LIU YanDAN YangpengWAN Xianronget al. Investigations on 5G-based passive sensing for IoT applications[C]. 2022 IEEE 8th International Conference on Computer and CommunicationsChengduChina2022: 823–828. doi: 10.1109/ICCC56324.2022.10065876.
    [59] CUI YuanhaoJING Xiaojunand MU Junsheng. Integrated sensing and communications via 5G NR waveform: Performance analysis[C]. 2022 IEEE International Conference on AcousticsSpeech and Signal ProcessingSingaporeSingapore2022: 8747–8751. doi: 10.1109/ICASSP43922.2022.9746355.
    [60] SAMCZYŃSKI PABRATKIEWICZ KPŁOTKA Met al. 5G network-based passive radar[J]. IEEE Transactions on Geoscience and Remote Sensing202260: 5108209. doi: 10.1109/TGRS.2021.3137904.
    [61] KSIĘŻYK APŁOTKA MABRATKIEWICZ Ket al. Opportunities and limitations in radar sensing based on 5G broadband cellular networks[J]. IEEE Aerospace and Electronic Systems Magazine202338(9): 4–21. doi: 10.1109/MAES.2023.3267061.
    [62] LI HangXIANG YangGUO Qinghuaet al. An efficient direct downlink sensing method using 5G NR SSB signals in perceptive mobile networks[J]. IEEE Internet of Things Journal202512(11): 15360–15369. doi: 10.1109/JIOT.2025.3527234.
    [63] ABRATKIEWICZ KKSIĘŻYK APŁOTKA Met al. SSB-based signal processing for passive radar using a 5G network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing202316: 3469–3484. doi: 10.1109/JSTARS.2023.3262291.
    [64] GOLZADEH MTIIROLA EANTTILA Let al. Downlink sensing in 5G-advanced and 6G: SIB1-assisted SSB approach[C]. 2023 IEEE 97th Vehicular Technology ConferenceFlorenceItaly2023: 1–7. doi: 10.1109/VTC2023-Spring57618.2023.10200933.
    [65] RAHMAN LCUI PengfeiZHANG J Aet al. Joint communication and radar sensing in 5G mobile network by compressive sensing[C]. 2019 19th International Symposium on Communications and Information TechnologiesHo Chi Minh CityVietnam2019: 599–604. doi: 10.1109/ISCIT.2019.8905229.
    [66] KANHERE OGOYAL SBELURI Met al. Target localization using bistatic and multistatic radar with 5G NR waveform[C]. 2021 IEEE 93rd Vehicular Technology ConferenceHelsinkiFinland2021: 1–7. doi: 10.1109/VTC2021-Spring51267.2021.9449071.
    [67] WEI ZhiqingWANG YuanMA Lianget al. 5G PRS-based sensing: A sensing reference signal approach for joint sensing and communication system[J]. IEEE Transactions on Vehicular Technology202372(3): 3250–3263. doi: 10.1109/TVT.2022.3215159.
    [68] ÖZBAY EBISHOYI P Kand PETROVA M. Empowering 5G PRS-based ISAC with compressed sensing[C]. 2024 IEEE 25th International Workshop on Signal Processing Advances in Wireless CommunicationsLuccaItaly2024: 341–345. doi: 10.1109/SPAWC60668.2024.10694602.
    [69] GOLZADEH MTIIROLA ETALVITIE Jet al. Joint sensing and UE positioning in 5G-6G: PRS range estimation with suppressed ambiguity[C]. 2024 IEEE Radar ConferenceDenverUSA2024: 1–6. doi: 10.1109/RadarConf2458775.2024.10548650.
    [70] NATARAJA N KSHARMA SALI Ket al. Bistatic vehicular radar with 5G-NR signals[C]. 2023 IEEE Global Communications ConferenceKuala LumpurMalaysia2023: 5605–5610. doi: 10.1109/GLOBECOM54140.2023.10436863.
    [71] MA LiangPAN ChengkangWANG Qixinget al. A downlink pilot based signal processing method for integrated sensing and communication towards 6G[C]. 2022 IEEE 95th Vehicular Technology ConferenceHelsinkiFinland2022: 1–5. doi: 10.1109/VTC2022-Spring54318.2022.9860693.
    [72] WEI ZhiqingLI FengyunLIU Haotianet al. Multiple reference signals collaborative sensing for integrated sensing and communication system towards 5G-A and 6G[J]. IEEE Transactions on Vehicular Technology202473(10): 15185–15199. doi: 10.1109/TVT.2024.3410352.
    [73] KHOSROSHAHI KSEHIER Pand MEKKI S. Leveraging PRS and PDSCH for integrated sensing and communication systems[C]. 2024 IEEE Global Communications ConferenceCape TownSouth Africa2024: 4702–4707. doi: 10.1109/GLOBECOM52923.2024.10901798.
    [74] KHOSROSHAHI KSEHIER Pand MEKKI S. Doppler ambiguity elimination using 5G signals in integrated sensing and communication[C]. 2024 IEEE 100th Vehicular Technology ConferenceWashingtonUSA2024: 1–6. doi: 10.1109/VTC2024-Fall63153.2024.10757748.
    [75] DUGGAL GVISHWAKARMA SMISHRA K Vet al. Doppler-resilient 802.11ad-based ultrashort range automotive joint radar-communications system[J]. IEEE Transactions on Aerospace and Electronic Systems202056(5): 4035–4048. doi: 10.1109/TAES.2020.2990393.
    [76] YE ZhifanZHOU ZhengchunFAN Pingzhiet al. Low ambiguity zone: Theoretical bounds and Doppler-resilient sequence design in integrated sensing and communication systems[J]. IEEE Journal on Selected Areas in Communications202240(6): 1809–1822. doi: 10.1109/JSAC.2022.3155510.
    [77] WANG DiaoCHEN WeiweiHE Yinghuiet al. Experimental study on ISAC performance with different sensing sequences[J]. IEEE Communications Letters202428(11): 2538–2542. doi: 10.1109/LCOMM.2024.3455779.
    [78] WEI ZhiqingQU HanyangJIANG Wangjunet al. Iterative signal processing for integrated sensing and communication systems[J]. IEEE Transactions on Green Communications and Networking20237(1): 401–412. doi: 10.1109/TGCN.2023.3234825.
    [79] KUMARI PVOROBYOV S Aand HEATH R W. Adaptive virtual waveform design for millimeter-wave joint communication-radar[J]. IEEE Transactions on Signal Processing202068: 715–730. doi: 10.1109/TSP.2019.2956689.
    [80] TANG AiminLI Songqianand WANG Xudong. Self-interference-resistant IEEE 802.11ad-based joint communication and automotive radar design[J]. IEEE Journal of Selected Topics in Signal Processing202115(6): 1484–1499. doi: 10.1109/JSTSP.2021.3118888.
    [81] ZHAO QiminTANG Aiminand WANG Xudong. Reference signal design and power optimization for energy-efficient 5G V2X integrated sensing and communications[J]. IEEE Transactions on Green Communications and Networking20237(1): 379–392. doi: 10.1109/TGCN.2023.3234392.
    [82] ZHANG RuiTSAI SCHOU T Het al. Staggered comb reference signal design for integrated communication and sensing[C]. 2024 IEEE 35th International Symposium on PersonalIndoor and Mobile Radio CommunicationsValenciaSpain2024: 1–7. doi: 10.1109/PIMRC59610.2024.10817393.
    [83] ZHANG RuiTSAI SCHOU T Het al. OFDM reference signal pattern design criteria for integrated communication and sensing[J]. IEEE Internet of Things Journal202512(6): 7389–7404. doi: 10.1109/JIOT.2024.3495562.
    [84] MEI DongyangWEI ZhiqingCHEN Xuet al. A coprime and periodic pilot design for ISAC system[C]. 2024 IEEE Wireless Communications and Networking ConferenceDubaiUnited Arab Emirates2024: 1–6. doi: 10.1109/WCNC57260.2024.10571182.
    [85] LIU WenjiaHOU XiaolinLIU Juanet al. Low-overhead sensing RS design for integrated sensing and communication (ISAC)[C]. 2025 IEEE Wireless Communications and Networking ConferenceMilanItaly2025: 1–6. doi: 10.1109/WCNC61545.2025.10978510.
    [86] 唐爱民王书涵曲文泽. 面向远距离高速无人机检测的OFDM通信感知一体化参考信号设计[J]. 雷达学报(中英文)202514(4): 842–853. doi: 10.12000/JR24240.

    TANG AiminWANG Shuhanand QU Wenze. Reference signal design in OFDM ISAC for long-range and high-speed UAV detection[J]. Journal of Radars202514(4): 842–853. doi: 10.12000/JR24240.
    [87] TANG Aimin and WANG Xudong. Self-interference-resistant IEEE 802.11ad-based joint communication and automotive long range radar[C]. 2020 IEEE Global Communications ConferenceTaipeiChina2020: 1–6. doi: 10.1109/GLOBECOM42002.2020.9348201.
    [88] WANG LinWEI ZhiqingSU Liyanet al. Coherent compensation based ISAC signal processing for long-range sensing: (Invited Paper)[C]. The 21st International Symposium on Modeling and Optimization in MobileAd Hocand Wireless NetworksSingaporeSingapore2023: 689–695. doi: 10.23919/WiOpt58741.2023.10349853.
    [89] TANG AiminZHAO QiminWANG Xudonget al. ISI-resistant reference signal design and processing for OFDM integrated communications and long-range radar sensing[J]. IEEE Communications Letters202428(6): 1322–1326. doi: 10.1109/LCOMM.2024.3394545.
    [90] ZHOU YanniXU ChaojunLIU Jianguoet al. Improving ISAC system long-range sensing with alternating cyclic prefix and postfix signals[C]. 2024 IEEE 35th International Symposium on PersonalIndoor and Mobile Radio CommunicationsValenciaSpain2024: 1–6. doi: 10.1109/PIMRC59610.2024.10817467.
    [91] 赵玉振陈龙永张福博. 一种基于OFDM-chirp的雷达通信一体化波形设计与处理方法[J]. 雷达学报202110(3): 453–466. doi: 10.12000/JR21028.

    ZHAO YuzhenCHEN Longyongand ZHANG Fubo. A new method of joint radar and communication waveform design and signal processing based on OFDM-chirp[J]. Journal of Radars202110(3): 453–466. doi: 10.12000/JR21028.
    [92] HAN S H and LEE J H. An overview of peak-to-average power ratio reduction techniques for multicarrier transmission[J]. IEEE Wireless Communications200512(2): 56–65. doi: 10.1109/MWC.2005.1421929.
    [93] BOURDOUX AFENG Ruoyuand BAUDUIN M. Low PAPR design for OFDM symbols with guard bands and baseband filtering[C]. 2024 IEEE Radar ConferenceDenverUSA2024. doi: 10.1109/RadarConf2458775.2024.10548775.
    [94] LI WanluXIANG Zhengand REN Peng. Waveform design for dual-function radar-communication system with Golay block coding[J]. IEEE Access20197: 184053–184062. doi: 10.1109/ACCESS.2019.2960658.
    [95] LAVERY S P and RATNARAJAH T. Remote sensing with constant-modulus OFDM signals from complementary sequences[C]. 2024 IEEE Radar ConferenceDenverUSA2024. doi: 10.1109/RadarConf2458775.2024.10548669.
    [96] HU XiaoyanMASOUROS CLIU Fanet al. Low-PAPR DFRC MIMO-OFDM waveform design for integrated sensing and communications[C]. IEEE International Conference on CommunicationsSeoulKoreaRepublic of2022: 1599–1604. doi: 10.1109/ICC45855.2022.9838548.
    [97] CHEN YatingWEN CaiHUANG Yanet al. Joint design of ISAC waveform under PAPR constraints[J]. China Communications202421(7): 186–211. doi: 10.23919/JCC.fa.2023-0156.202407.
    [98] TIAN XuanxuanZHANG TingtingZHANG Qinyuet al. HRRP-based extended target recognition in OFDM-based RadCom systems[C]. 2018 IEEE Global Communications ConferenceAbu DhabiUnited Arab Emirates2018: 1–6. doi: 10.1109/GLOCOM.2018.8647263.
    [99] VARSHNEY PBABU Pand STOICA P. Low-PAPR OFDM waveform design for radar and communication systems[J]. IEEE Transactions on Radar Systems20231: 69–74. doi: 10.1109/TRS.2023.3275210.
    [100] HUANG YixuanHU SuMA Shiyonget al. Designing low-PAPR waveform for OFDM-based RadCom systems[J]. IEEE Transactions on Wireless Communications202221(9): 6979–6993. doi: 10.1109/TWC.2022.3153606.
    [101] YAO RubingWEI ZhiqingSU Liyanet al. Low-PAPR integrated sensing and communication waveform design[C]. 2023 IEEE Wireless Communications and Networking ConferenceGlasgowUnited Kingdom2023: 1–6. doi: 10.1109/WCNC55385.2023.10119026.
    [102] LIYANAARACHCHI S DRIIHONEN TBARNETO C Bet al. Optimized waveforms for 5G-6G communication with sensing: Theorysimulations and experiments[J]. IEEE Transactions on Wireless Communications202120(12): 8301–8315. doi: 10.1109/TWC.2021.3091806.
    [103] HU YanmoDENG WeiboZHANG J Aet al. Resource optimization for delay estimation in perceptive mobile networks[J]. IEEE Wireless Communications Letters202413(1): 223–227. doi: 10.1109/LWC.2023.3325961.
    [104] HUANG ZheWANG KexuanLIU Anet al. Joint pilot optimizationtarget detection and channel estimation for integrated sensing and communication systems[J]. IEEE Transactions on Wireless Communications202221(12): 10351–10365. doi: 10.1109/TWC.2022.3183621.
    [105] OZKAPTAN C DEKICI EALTINTAS Oet al. OFDM pilot-based radar for joint vehicular communication and radar systems[C]. 2018 IEEE Vehicular Networking ConferenceTaipeiChina2018. doi: 10.1109/VNC.2018.8628347.
    [106] WANG ChanghengALTINTAS OOZKAPTAN C Det al. Multi-range joint automotive radar and communication using pilot-based OFDM radar[C]. 2020 IEEE Vehicular Networking ConferenceNew YorkUSA2020: 1–4. doi: 10.1109/VNC51378.2020.9318373.
    [107] PU ZhiweiWANG WeiLAO Zhiweiet al. Power allocation of integrated sensing and communication system for the internet of vehicles[J]. IEEE Transactions on Green Communications and Networking20248(4): 1717–1728. doi: 10.1109/TGCN.2024.3391015.
    [108] WANG Xuan and HAN Shengqian. Optimization of power allocation for OFDM based ISAC systems[C]. 2024 IEEE Global Communications ConferenceCape TownSouth Africa2024: 5387–5392. doi: 10.1109/GLOBECOM52923.2024.10901655.
    [109] SHI ChenguangWANG YijieWANG Feiet al. Joint optimization scheme for subcarrier selection and power allocation in multicarrier dual-function radar-communication system[J]. IEEE Systems Journal202115(1): 947–958. doi: 10.1109/JSYST.2020.2984637.
    [110] ZHU JiaCUI YuanhaoMU Junshenget al. Power minimization strategy based subcarrier allocation and power assignment for integrated sensing and communication[C]. 2023 IEEE Wireless Communications and Networking ConferenceGlasgowUnited Kingdom2023: 1–6. doi: 10.1109/WCNC55385.2023.10118989.
    [111] ZHAO QiminLI SongqianTANG Aiminet al. Energy-efficient reference signal optimization for 5G V2X joint communication and sensing[C]. IEEE International Conference on CommunicationsSeoulRepublic of Korea2022: 1040–1045. doi: 10.1109/ICC45855.2022.9838978.
    [112] STOICA PHE Haoand LI Jian. On designing sequences with impulse-like periodic correlation[J]. IEEE Signal Processing Letters200916(8): 703–706. doi: 10.1109/LSP.2009.2021378.
    [113] LIU FanXIONG YifengLU Shihanget al. Uncovering the iceberg in the sea: Fundamentals of pulse shaping and modulation design for random ISAC signals[J]. IEEE Transactions on Signal Processing202573: 2511–2526. doi: 10.1109/TSP.2025.3580596.
    [114] CHTERENTAL O and ÐOKOVIĆ D Ž. On orthostochasticunistochastic and qustochastic matrices[J]. Linear Algebra and its Applications2008428(4): 1178–1201. doi: 10.1016/j.laa.2007.09.022.
    [115] LIU FanZHANG YingXIONG Yifenget al. CP-OFDM achieves the lowest average ranging sidelobe under QAM/PSK constellation[J]. IEEE Transactions on Information Theory. doi: 10.1109/TIT.2025.3591267.
    [116] DECARLO L T. On the meaning and use of kurtosis[J]. Psychological Methods19972(3): 292–307. doi: 10.1037/1082-989X.2.3.292.
    [117] ABOU-FAYCAL I CTROTT M Dand SHAMAI S. The capacity of discrete-time memoryless Rayleigh-fading channels[J]. IEEE Transactions on Information Theory200147(4): 1290–1301. doi: 10.1109/18.923716.
    [118] GURSOY M CPOOR H Vand VERDU S. Noncoherent Rician fading Channel-part II: Spectral efficiency in the low-power regime[J]. IEEE Transactions on Wireless Communications20054(5): 2207–2221. doi: 10.1109/TWC.2005.853971.
    [119] WEI ZhiqingPIAO JinghuiYUAN Xinet al. Waveform design for MIMO-OFDM integrated sensing and communication system: An information theoretical approach[J]. IEEE Transactions on Communications202472(1): 496–509. doi: 10.1109/TCOMM.2023.3317258.
    [120] BAZZI A and CHAFII M. On integrated sensing and communication waveforms with tunable PAPR[J]. IEEE Transactions on Wireless Communications202322(11): 7345–7360. doi: 10.1109/TWC.2023.3250263.
    [121] WANG ShixiongDAI WeiWANG Haoweiet al. Robust waveform design for integrated sensing and communication[J]. IEEE Transactions on Signal Processing202472: 3122–3138. doi: 10.1109/TSP.2024.3410142.
    [122] ZHANG RuoyuSHIM BYUAN Weijieet al. Integrated sensing and communication waveform design with sparse vector coding: Low sidelobes and ultra reliability[J]. IEEE Transactions on Vehicular Technology202271(4): 4489–4494. doi: 10.1109/TVT.2022.3146280.
    [123] BARRUECO JMONTALBAN JIRADIER Eet al. Constellation design for future communication systems: A comprehensive survey[J]. IEEE Access20219: 89778–89797. doi: 10.1109/ACCESS.2021.3090774.
    [124] CHO J and WINZER P J. Probabilistic constellation shaping for optical fiber communications[J]. Journal of Lightwave Technology201937(6): 1590–1607. doi: 10.1109/JLT.2019.2898855.
    [125] DU ZhenLIU FanXIONG Yifenget al. Reshaping the ISAC tradeoff under OFDM signaling: A probabilistic constellation shaping approach[J]. IEEE Transactions on Signal Processing202472: 4782–4797. doi: 10.1109/TSP.2024.3465499.
    [126] XU JingjingDU ZhenWANG Jieet al. An experimental validation of ISAC with probabilistic constellation shaping under OFDM signaling[C]. 2024 IEEE International Conference on Unmanned SystemsNanjingChina2024: 1579–1584. doi: 10.1109/ICUS61736.2024.10840131.
    [127] LIAO ZihanLIU FanLI Shuangyanget al. Pulse shaping for random ISAC signals: The ambiguity function between symbols matters[J]. IEEE Transactions on Wireless Communications202524(4): 2832–2846. doi: 10.1109/TWC.2024.3525440.
    [128] GAUDIO LKOBAYASHI MCAIRE Get al. On the effectiveness of OTFS for joint radar parameter estimation and communication[J]. IEEE Transactions on Wireless Communications202019(9): 5951–5965. doi: 10.1109/TWC.2020.2998583.
    [129] YUAN WeijieZHOU LinDEHKORDI S Ket al. From OTFS to DD-ISAC: Integrating sensing and communications in the delay Doppler domain[J]. IEEE Wireless Communications202431(6): 152–160. doi: 10.1109/MWC.018.2300607.
    [130] BEMANI AKSAIRI Nand KOUNTOURIS M. Integrated sensing and communications with affine frequency division multiplexing[J]. IEEE Wireless Communications Letters202413(5): 1255–1259. doi: 10.1109/LWC.2024.3367178.
    [131] LEVANON N and MOZESON E. Radar Signals[M]. New York: John Wiley & Sons2004.
    [132] LI AngSPANO DKRIVOCHIZA Jet al. A tutorial on interference exploitation via symbol-level precoding: Overviewstate-of-the-art and future directions[J]. IEEE Communications Surveys & Tutorials202022(2): 796–839. doi: 10.1109/COMST.2020.2980570.
    [133] CHUNG S T and GOLDSMITH A J. Degrees of freedom in adaptive modulation: A unified view[J]. IEEE Transactions on Communications200149(9): 1561–1571. doi: 10.1109/26.950343.
    [134] LI Ang and MASOUROS C. A two-stage vector perturbation scheme for adaptive modulation in downlink MU-MIMO[J]. IEEE Transactions on Vehicular Technology201665(9): 7785–7791. doi: 10.1109/TVT.2015.2489263.
    [135] MASOUROS C and ZHENG Gan. Exploiting known interference as green signal power for downlink beamforming optimization[J]. IEEE Transactions on Signal Processing201563(14): 3628–3640. doi: 10.1109/TSP.2015.2430839.
    [136] MENG KaitaoMASOUROS CCHEN Guangjiet al. Network-level integrated sensing and communication: Interference management and BS coordination using stochastic geometry[J]. IEEE Transactions on Wireless Communications202423(12): 19365–19381. doi: 10.1109/TWC.2024.3483031.
    [137] MENG KaitaoMASOUROS CPETROPULU A Pet al. Cooperative ISAC networks: Opportunities and challenges[J]. IEEE Wireless Communications202532(3): 212–219. doi: 10.1109/MWC.008.2400151.
    [138] HUANG YiFANG YuanLI Xinminet al. Coordinated power control for network integrated sensing and communication[J]. IEEE Transactions on Vehicular Technology202271(12): 13361–13365. doi: 10.1109/TVT.2022.3194139.
    [139] LYU ZhonghaoZHU Guangxuand XU Jie. Joint maneuver and beamforming design for UAV-enabled integrated sensing and communication[J]. IEEE Transactions on Wireless Communications202322(4): 2424–2440. doi: 10.1109/TWC.2022.3211533.
    [140] WU KaiPEGORARO JMENEGHELLO Fet al. Sensing in bistatic ISAC systems with clock asynchronism: A signal processing perspective[J]. IEEE Signal Processing Magazine202441(5): 31–43. doi: 10.1109/MSP.2024.3418725.
    [141] LUO ChenhaoWANG ChongruiTANG Aiminet al. Experimental study on reference-path-aided system calibration for mmWave bistatic ISAC systems[C]. 2025 IEEE Global Communications ConferenceTaipeiChina2025: 1–6.
    [142] HUA HaochengXU Jieand HAN T X. Optimal transmit beamforming for integrated sensing and communication[J]. IEEE Transactions on Vehicular Technology202372(8): 10588–10603. doi: 10.1109/TVT.2023.3262513.
    [143] WEI ZhiqingYAO RubingYUAN Xinet al. Precoding optimization for MIMO-OFDM integrated sensing and communication systems[J]. IEEE Transactions on Cognitive Communications and Networking202511(1): 288–299. doi: 10.1109/TCCN.2024.3445376.
    [144] 张若愚袁伟杰崔原豪等. 面向6G的大规模MIMO通信感知一体化: 现状与展望[J]. 移动通信202246(6): 17–23. doi: 10.3969/j.issn.1006-1010.2022.06.003.

    ZHANG RuoyuYUAN WeijieCUI Yuanhaoet al. Integrated sensing and communications with massive MIMO for 6G: Status and prospect[J]. Mobile Communications202246(6): 17–23. doi: 10.3969/j.issn.1006-1010.2022.06.003.
    [145] ZHANG RuoyuCHENG LeiWANG Shuaiet al. Integrated sensing and communication with massive MIMO: A unified tensor approach for channel and target parameter estimation[J]. IEEE Transactions on Wireless Communications202423(8): 8571–8587. doi: 10.1109/TWC.2024.3351856.
    [146] ZHANG RuoyuWU XiaopengLOU Yiet al. Channel-training-aided target sensing for terahertz integrated sensing and massive MIMO communications[J]. IEEE Internet of Things Journal202512(4): 3755–3770. doi: 10.1109/JIOT.2024.3447584.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-22
  • 修回日期:  2025-07-21
  • 网络出版日期:  2025-07-25
  • 刊出日期:  2025-08-28

目录