×

注意!页面内容来自https://www.nature.com/articles/s41585-024-00991-8,本站不储存任何内容,为了更好的阅读体验进行在线解析,若有广告出现,请及时反馈。若您觉得侵犯了您的利益,请通知我们进行删除,然后访问 原网页

  • Review Article
  • Published:

Prostate cancer epigenetics — from pathophysiology to clinical application

Abstract

Prostate cancer is a multifactorial disease influenced by various molecular features. Over the past decadesepigeneticswhich is the study of changes in gene expression without altering the DNA sequencehas been recognized as a major driver of this disease. In the past 50 yearsadvancements in technological tools to characterize the epigenome have highlighted crucial roles of epigenetic mechanisms throughout the entire spectrum of prostate cancerfrom initiation to progressionincluding localized diseasemetastatic disseminationcastration resistance and neuroendocrine transdifferentiation. Substantial advances in the understanding of epigenetic mechanisms in the pathophysiology of prostate cancer have been carried outbut translating preclinical achievements into clinical practice remains challenging. Ongoing research and biomarker-oriented clinical trials are expected to increase the likelihood of successfully integrating epigenetics into prostate cancer clinical management.

Key points

  • Prostate cancer is a very heterogeneous diseaseboth spatially (within the primary tumour) and temporallyrequiring new biomarkers and therapies to tackle multilevel diversity.

  • Genomic characterization of prostate cancer enables subclusters of patients with specific features to be identifiedbut epigenetics offers a further layer of patient stratificationfacilitating personalized care.

  • Epigenetic biomarkers can be detected in tissue and liquid biopsy samplessometimes very early in the natural history of prostate cancer and even in precursor lesionsmaking these markers optimal candidates for screening strategies. Howeveronly a few of these markers show the potential for clinical translation.

  • Epigenetic drugs have had limited success as monotherapiesbut preclinical and clinical data highlight the promise of these drugs in re-sensitizing patients to other treatmentssuch as androgen-receptor-targeting drugs and immunotherapy.

  • Prioritizing biomarker-oriented clinical trials is essential to identify specific molecular subgroups of patients with prostate cancer who are most likely to benefit from epigenetic drugs.

This is a preview of subscription contentaccess via your institution

Access options

< type="text/css">/* specs start */ /* specs end */

Buy this article

39,95 €

Prices may be subject to local taxes which are calculated during checkout

< type="text/css"> /* specs start */ { display: none !important; } .LiveAreaSection * { align-content: stretch; align-items: stretch; align-self: auto; animation-delay: 0s; animation-direction: normal; animation-duration: 0s; animation-fill-mode: none; animation-iteration-count: 1; animation-name: none; animation-play-state: running; animation-timing-function: ease; azimuth: center; backface-visibility: visible; background-attachment: scroll; background-blend-mode: normal; background-clip: borderBox; background-color: transparent; background-image: none; background-origin: paddingBox; background-position: 0 0; background-repeat: repeat; background-size: auto auto; block-size: auto; border-block-end-color: currentcolor; border-block-end-: none; border-block-end-width: medium; border-block-start-color: currentcolor; border-block-start-: none; border-block-start-width: medium; border-bottom-color: currentcolor; border-bottom-left-radius: 0; border-bottom-right-radius: 0; border-bottom-: none; border-bottom-width: medium; border-collapse: separate; border-image-outset: 0s; border-image-repeat: stretch; border-image-slice: 100%; border-image-source: none; border-image-width: 1; border-inline-end-color: currentcolor; border-inline-end-: none; border-inline-end-width: medium; border-inline-start-color: currentcolor; border-inline-start-: none; border-inline-start-width: medium; border-left-color: currentcolor; border-left-: none; border-left-width: medium; border-right-color: currentcolor; border-right-: none; border-right-width: medium; border-spacing: 0; border-top-color: currentcolor; border-top-left-radius: 0; border-top-right-radius: 0; border-top-: none; border-top-width: medium; bottom: auto; box-decoration-break: slice; box-shadow: none; box-sizing: border-box; break-after: auto; break-before: auto; break-inside: auto; caption-side: top; caret-color: auto; clear: none; clip: auto; clip-path: none; color: initial; column-count: auto; column-fill: balance; column-gap: normal; column-rule-color: currentcolor; column-rule-: none; column-rule-width: medium; column-span: none; column-width: auto; content: normal; counter-increment: none; counter-reset: none; cursor: auto; display: inline; empty-cells: show; filter: none; flex-basis: auto; flex-direction: row; flex-grow: 0; flex-shrink: 1; flex-wrap: nowrap; float: none; font-family: initial; font-feature-settings: normal; font-kerning: auto; font-language-override: normal; font-size: medium; font-size-adjust: none; font-stretch: normal; font-: normal; font-synthesis: weight ; font-variant: normal; font-variant-alternates: normal; font-variant-caps: normal; font-variant-east-asian: normal; font-variant-ligatures: normal; font-variant-numeric: normal; font-variant-position: normal; font-weight: 400; grid-auto-columns: auto; grid-auto-flow: row; grid-auto-rows: auto; grid-column-end: auto; grid-column-gap: 0; grid-column-start: auto; grid-row-end: auto; grid-row-gap: 0; grid-row-start: auto; grid-template-areas: none; grid-template-columns: none; grid-template-rows: none; height: auto; hyphens: manual; image-orientation: 0deg; image-rendering: auto; image-resolution: 1dppx; ime-mode: auto; inline-size: auto; isolation: auto; justify-content: flexStart; left: auto; letter-spacing: normal; line-break: auto; line-height: normal; list--image: none; list--position: outside; list--type: disc; margin-block-end: 0; margin-block-start: 0; margin-bottom: 0; margin-inline-end: 0; margin-inline-start: 0; margin-left: 0; margin-right: 0; margin-top: 0; mask-clip: borderBox; mask-composite: add; mask-image: none; mask-mode: matchSource; mask-origin: borderBox; mask-position: 0 0; mask-repeat: repeat; mask-size: auto; mask-type: luminance; max-height: none; max-width: none; min-block-size: 0; min-height: 0; min-inline-size: 0; min-width: 0; mix-blend-mode: normal; object-fit: fill; object-position: 50% 50%; offset-block-end: auto; offset-block-start: auto; offset-inline-end: auto; offset-inline-start: auto; opacity: 1; order: 0; orphans: 2; outline-color: initial; outline-offset: 0; outline-: none; outline-width: medium; overflow: visible; overflow-wrap: normal; overflow-x: visible; overflow-y: visible; padding-block-end: 0; padding-block-start: 0; padding-bottom: 0; padding-inline-end: 0; padding-inline-start: 0; padding-left: 0; padding-right: 0; padding-top: 0; page-break-after: auto; page-break-before: auto; page-break-inside: auto; perspective: none; perspective-origin: 50% 50%; pointer-events: auto; position: static; quotes: initial; resize: none; right: auto; ruby-align: spaceAround; ruby-merge: separate; ruby-position: over; scroll-behavior: auto; scroll-snap-coordinate: none; scroll-snap-destination: 0 0; scroll-snap-points-x: none; scroll-snap-points-y: none; scroll-snap-type: none; shape-image-threshold: 0; shape-margin: 0; shape-outside: none; tab-size: 8; table-layout: auto; text-align: initial; text-align-last: auto; text-combine-upright: none; text-decoration-color: currentcolor; text-decoration-line: none; text-decoration-: solid; text-emphasis-color: currentcolor; text-emphasis-position: over right; text-emphasis-: none; text-indent: 0; text-justify: auto; text-orientation: mixed; text-overflow: clip; text-rendering: auto; text-shadow: none; text-transform: none; text-underline-position: auto; top: auto; touch-action: auto; transform: none; transform-box: borderBox; transform-origin: 50% 50%0; transform-: flat; transition-delay: 0s; transition-duration: 0s; transition-property: all; transition-timing-function: ease; vertical-align: baseline; visibility: visible; white-space: normal; widows: 2; width: auto; will-change: auto; word-break: normal; word-spacing: normal; word-wrap: normal; writing-mode: horizontalTb; z-index: auto; -webkit-appearance: none; -moz-appearance: none; -ms-appearance: none; appearance: none; margin: 0; } .LiveAreaSection { width: 100%; } .LiveAreaSection .login-option-buybox { display: block; width: 100%; font-size: 17px; line-height: 30px; color: #222; padding-top: 30px; font-family: HardingPalatinoserif; } .LiveAreaSection .additional-access-options { display: block; font-weight: 700; font-size: 17px; line-height: 30px; color: #222; font-family: HardingPalatinoserif; } .LiveAreaSection .additional-login > li:not(:first-child)::before { transform: translateY(-50%); content: ""; height: 1rem; position: absolute; top: 50%; left: 0; border-left: 2px solid #999; } .LiveAreaSection .additional-login > li:not(:first-child) { padding-left: 10px; } .LiveAreaSection .additional-login > li { display: inline-block; position: relative; vertical-align: middle; padding-right: 10px; } .BuyBoxSection { display: flex; flex-wrap: wrap; flex: 1; flex-direction: row-reverse; margin: -30px -15px 0; } .BuyBoxSection .box-inner { width: 100%; height: 100%; padding: 30px 5px; display: flex; flex-direction: column; justify-content: space-between; } .BuyBoxSection p { margin: 0; } .BuyBoxSection .readcube-buybox { background-color: #f3f3f3; flex-shrink: 1; flex-grow: 1; flex-basis: 255px; background-clip: content-box; padding: 0 15px; margin-top: 30px; } .BuyBoxSection .subscribe-buybox { background-color: #f3f3f3; flex-shrink: 1; flex-grow: 4; flex-basis: 300px; background-clip: content-box; padding: 0 15px; margin-top: 30px; } .BuyBoxSection .subscribe-buybox-nature-plus { background-color: #f3f3f3; flex-shrink: 1; flex-grow: 4; flex-basis: 100%; background-clip: content-box; padding: 0 15px; margin-top: 30px; } .BuyBoxSection .title-readcube, .BuyBoxSection .title-buybox { display: block; margin: 0; margin-right: 10%; margin-left: 10%; font-size: 24px; line-height: 32px; color: #222; text-align: center; font-family: HardingPalatinoserif; } .BuyBoxSection .title-asia-buybox { display: block; margin: 0; margin-right: 5%; margin-left: 5%; font-size: 24px; line-height: 32px; color: #222; text-align: center; font-family: HardingPalatinoserif; } .BuyBoxSection .asia-link, .Link-328123652, .Link-2926870917, .Link-2291679238, .Link-595459207 { color: #069; cursor: pointer; text-decoration: none; font-size: 1.05em; font-family: -apple-systemBlinkMacSystemFont"Segoe UI"Roboto, Oxygen-SansUbuntuCantarell"Helvetica Neue"sans-serif; line-height: 1.05em6; } .BuyBoxSection .access-readcube { display: block; margin: 0; margin-right: 10%; margin-left: 10%; font-size: 14px; color: #222; padding-top: 10px; text-align: center; font-family: -apple-systemBlinkMacSystemFont"Segoe UI"Roboto, Oxygen-SansUbuntuCantarell"Helvetica Neue"sans-serif; line-height: 20px; } .BuyBoxSection ul { margin: 0; } .BuyBoxSection .link-usp { display: list-item; margin: 0; margin-left: 20px; padding-top: 6px; list--position: inside; } .BuyBoxSection .link-usp span { font-size: 14px; color: #222; font-family: -apple-systemBlinkMacSystemFont"Segoe UI"Roboto, Oxygen-SansUbuntuCantarell"Helvetica Neue"sans-serif; line-height: 20px; } .BuyBoxSection .access-asia-buybox { display: block; margin: 0; margin-right: 5%; margin-left: 5%; font-size: 14px; color: #222; padding-top: 10px; text-align: center; font-family: -apple-systemBlinkMacSystemFont"Segoe UI"Roboto, Oxygen-SansUbuntuCantarell"Helvetica Neue"sans-serif; line-height: 20px; } .BuyBoxSection .access-buybox { display: block; margin: 0; margin-right: 10%; margin-left: 10%; font-size: 14px; color: #222; opacity: 0.8px; padding-top: 10px; text-align: center; font-family: -apple-systemBlinkMacSystemFont"Segoe UI"Roboto, Oxygen-SansUbuntuCantarell"Helvetica Neue"sans-serif; line-height: 20px; } .BuyBoxSection .price-buybox { display: block; font-size: 30px; color: #222; font-family: -apple-systemBlinkMacSystemFont"Segoe UI"Roboto, Oxygen-SansUbuntuCantarell"Helvetica Neue"sans-serif; padding-top: 30px; text-align: center; } .BuyBoxSection .price-buybox-to { display: block; font-size: 30px; color: #222; font-family: -apple-systemBlinkMacSystemFont"Segoe UI"Roboto, Oxygen-SansUbuntuCantarell"Helvetica Neue"sans-serif; text-align: center; } .BuyBoxSection .price-info-text { font-size: 16px; padding-right: 10px; color: #222; font-family: -apple-systemBlinkMacSystemFont"Segoe UI"Roboto, Oxygen-SansUbuntuCantarell"Helvetica Neue"sans-serif; } .BuyBoxSection .price-value { font-size: 30px; font-family: -apple-systemBlinkMacSystemFont"Segoe UI"Roboto, Oxygen-SansUbuntuCantarell"Helvetica Neue"sans-serif; } .BuyBoxSection .price-per-period { font-family: -apple-systemBlinkMacSystemFont"Segoe UI"Roboto, Oxygen-SansUbuntuCantarell"Helvetica Neue"sans-serif; } .BuyBoxSection .price-from { font-size: 14px; padding-right: 10px; color: #222; font-family: -apple-systemBlinkMacSystemFont"Segoe UI"Roboto, Oxygen-SansUbuntuCantarell"Helvetica Neue"sans-serif; line-height: 20px; } .BuyBoxSection .issue-buybox { display: block; font-size: 13px; text-align: center; color: #222; font-family: -apple-systemBlinkMacSystemFont"Segoe UI"Roboto, Oxygen-SansUbuntuCantarell"Helvetica Neue"sans-serif; line-height: 19px; } .BuyBoxSection .no-price-buybox { display: block; font-size: 13px; line-height: 18px; text-align: center; padding-right: 10%; padding-left: 10%; padding-bottom: 20px; padding-top: 30px; color: #222; font-family: -apple-systemBlinkMacSystemFont"Segoe UI"Roboto, Oxygen-SansUbuntuCantarell"Helvetica Neue"sans-serif; } .BuyBoxSection .vat-buybox { display: block; margin-top: 5px; margin-right: 20%; margin-left: 20%; font-size: 11px; color: #222; padding-top: 10px; padding-bottom: 15px; text-align: center; font-family: -apple-systemBlinkMacSystemFont"Segoe UI"Roboto, Oxygen-SansUbuntuCantarell"Helvetica Neue"sans-serif; line-height: 17px; } .BuyBoxSection .tax-buybox { display: block; width: 100%; color: #222; padding: 20px 16px; text-align: center; font-family: -apple-systemBlinkMacSystemFont"Segoe UI"Roboto, Oxygen-SansUbuntuCantarell"Helvetica Neue"sans-serif; line-height: NaNpx; } .BuyBoxSection .button-container { display: flex; padding-right: 20px; padding-left: 20px; justify-content: center; } .BuyBoxSection .button-container > * { flex: 1px; } .BuyBoxSection .button-container > a:hover, .Button-505204839:hover, .Button-1078489254:hover, .Button-2737859108:hover { text-decoration: none; } .BuyBoxSection .btn-secondary { background: #fff; } .BuyBoxSection .button-asia { background: #069; border: 1px solid #069; border-radius: 0; cursor: pointer; display: block; padding: 9px; outline: 0; text-align: center; text-decoration: none; min-width: 80px; margin-top: 75px; } .BuyBoxSection .button-label-asia, .ButtonLabel-3869432492, .ButtonLabel-3296148077, .ButtonLabel-1636778223 { display: block; color: #fff; font-size: 17px; line-height: 20px; font-family: -apple-systemBlinkMacSystemFont"Segoe UI"Roboto, Oxygen-SansUbuntuCantarell"Helvetica Neue"sans-serif; text-align: center; text-decoration: none; cursor: pointer; } .Button-505204839, .Button-1078489254, .Button-2737859108 { background: #069; border: 1px solid #069; border-radius: 0; cursor: pointer; display: block; padding: 9px; outline: 0; text-align: center; text-decoration: none; min-width: 80px; max-width: 320px; margin-top: 20px; } .Button-505204839 .btn-secondary-label, .Button-1078489254 .btn-secondary-label, .Button-2737859108 .btn-secondary-label { color: #069; } .uList-2102244549 { list-: none; padding: 0; margin: 0; } .article-buy-button { font-family: -apple-systemBlinkMacSystemFont"Segoe UI"RobotoOxygen-SansUbuntuCantarell"Helvetica Neue"sans-serif; color: #069; } /* specs end */
Fig. 1: Epigenetic evolution of prostate cancer across disease stages and potential epidrug strategies.

Similar content being viewed by others

References

  1. Ferlay J. et al. International Agency for Research on Cancer. Global Cancer Observatory: Cancer Today https://gco.iarc.who.int/today (accessed 29 June 2014).

  2. WongM. C. et al. Global incidence and mortality for prostate cancer: analysis of temporal patterns and trends in 36 countries. Eur. Urol. 70862–874 (2016).

    Article  PubMed  Google Scholar 

  3. DyG. W.GoreJ. L.ForouzanfarM. H.NaghaviM. & FitzmauriceC. Global burden of urologic cancers1990–2013. Eur. Urol. 71437–446 (2017).

    Article  PubMed  Google Scholar 

  4. HugossonJ. et al. A 16-yr follow-up of the European randomized study of screening for prostate cancer. Eur. Urol. 7643–51 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  5. AuvinenA. Prudent practice optimizes screening outcomes. Nat. Rev. Urol. 13376–377 (2016).

    Article  PubMed  Google Scholar 

  6. The Cancer Genome Atlas Research Network. The molecular taxonomy of primary prostate cancer. Cell 1631011–1025 (2015).

  7. NelsonW. G.De MarzoA. M. & IsaacsW. B. Mechanisms of disease: prostate cancer. N. Engl. J. Med. 349366–381 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. ConteducaV.HessJ.YamadaY.KuS. Y. & BeltranH. Epigenetics in prostate cancer: clinical implications. Transl. Androl. Urol. 103104–3116 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  9. JerónimoC. et al. Epigenetics in prostate cancer: biologic and clinical relevance. Eur. Urol. 60753–766 (2011).

    Article  PubMed  Google Scholar 

  10. CavalliG. & HeardE. Advances in epigenetics link genetics to the environment and disease. Nature 571489–499 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. BesselinkN. et al. The genome-wide mutational consequences of DNA hypomethylation. Sci. Rep. 136874 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. YuX. et al. Cancer epigenetics: from laboratory studies and clinical trials to precision medicine. Cell Death Discov. 1028 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  13. AnastasiadouE.JacobL. S. & SlackF. J. Non-coding RNA networks in cancer. Nat. Rev. Cancer 185–18 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Costa-PinheiroP. et al. MicroRNA-375 plays a dual role in prostate carcinogenesis. Clin. Epigenetics 742 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ramalho-CarvalhoJ.FrommB.HenriqueR. & JeronimoC. Deciphering the function of non-coding RNAs in prostate cancer. Cancer Metastasis Rev. 35235–262 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. ZhaoS.AllisC. D. & WangG. G. The language of chromatin modification in human cancers. Nat. Rev. Cancer 21413–430 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  17. PerryA. S.WatsonR. W.LawlerM. & HollywoodD. The epigenome as a therapeutic target in prostate cancer. Nat. Rev. Urol. 7668–680 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. GracaI. et al. Epigenetic modulators as therapeutic targets in prostate cancer. Clin. Epigenetics 898 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  19. LøvfM. et al. Multifocal primary prostate cancer exhibits high degree of genomic heterogeneity. Eur. Urol. 75498–505 (2019).

    Article  PubMed  Google Scholar 

  20. BoutrosP. C. et al. Spatial genomic heterogeneity within localizedmultifocal prostate cancer. Nat. Genet. 47736–745 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. CooperC. S. et al. Analysis of the genetic phylogeny of multifocal prostate cancer identifies multiple independent clonal expansions in neoplastic and morphologically normal prostate tissue. Nat. Genet. 47367–372 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. EksiS. E. et al. Epigenetic loss of heterogeneity from low to high grade localized prostate tumours. Nat. Commun. 127292 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. PirozziC. J. & YanH. The implications of IDH mutations for cancer development and therapy. Nat. Rev. Clin. Oncol. 18645–661 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. StorebjergT. M. et al. Dysregulation and prognostic potential of 5-methylcytosine (5mC)5-hydroxymethylcytosine (5hmC)5-formylcytosine (5fC)and 5-carboxylcytosine (5caC) levels in prostate cancer. Clin. Epigenetics 10105 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  25. ZomaM. et al. EZH2-induced lysine K362 methylation enhances TMPRSS2-ERG oncogenic activity in prostate cancer. Nat. Commun. 124147 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. UrbanucciA. et al. Androgen receptor deregulation drives bromodomain-mediated chromatin alterations in prostate cancer. Cell Rep. 192045–2059 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. DaiX. et al. Prostate cancer–associated SPOP mutations confer resistance to BET inhibitors through stabilization of BRD4. Nat. Med. 231063–1071 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. ZhangP. et al. Intrinsic BET inhibitor resistance in SPOP-mutated prostate cancer is mediated by BET protein stabilization and AKT–mTORC1 activation. Nat. Med. 231055–1062 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. KneppersJ. et al. Extensive androgen receptor enhancer heterogeneity in primary prostate cancers underlies transcriptional diversity and metastatic potential. Nat. Commun. 137367 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. StellooS.BergmanA. M. & ZwartW. Androgen receptor enhancer usage and the chromatin regulatory landscape in human prostate cancers. Endocr. Relat. Cancer 26R267–R285 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. KneppersJ.BergmanA. M. & ZwartW. Prostate cancer epigenetic plasticity and enhancer heterogeneity: molecular causesconsequences and clinical implications. Adv. Exp. Med. Biol. 1390255–275 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. ChinS. P.DickinsonJ. L. & HollowayA. F. Epigenetic regulation of prostate cancer. Clin. Epigenetics 2151–169 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. HenriqueR. & JerónimoC. GSTP1 hypermethylation for prostate cancer detection. Prostate Cancer Screening 279–288 (2009).

  34. LeeW. H. et al. Cytidine methylation of regulatory sequences near the pi-class glutathione S-transferase gene accompanies human prostatic carcinogenesis. Proc. Natl Acad. Sci. USA 9111733–11737 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. JeronimoC. et al. Quantitation of GSTP1 methylation in non-neoplastic prostatic tissue and organ-confined prostate adenocarcinoma. J. Natl Cancer Inst. 931747–1752 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. HenriqueR. & JerónimoC. Molecular detection of prostate cancer: a role for GSTP1 hypermethylation. Eur. Urol. 46660–669 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. YamanakaM. et al. Altered methylation of multiple genes in carcinogenesis of the prostate. Int. J. Cancer 106382–387 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. MajumdarS.BucklesE.EstradaJ. & KoochekpourS. Aberrant DNA methylation and prostate cancer. Curr. Genomics 12486–505 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. JeronimoC. et al. A quantitative promoter methylation profile of prostate cancer. Clin. Cancer Res. 108472–8478 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. PatelP. G. et al. A three-gene DNA methylation biomarker accurately classifies early stage prostate cancer. Prostate 791705–1714 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. KirbyM. K. et al. Genome-wide DNA methylation measurements in prostate tissues uncovers novel prostate cancer diagnostic biomarkers and transcription factor binding patterns. BMC Cancer 171–10 (2017).

    Article  Google Scholar 

  42. VolkelP.DupretB.Le BourhisX. & AngrandP. O. Diverse involvement of EZH2 in cancer epigenetics. Am. J. Transl. Res. 7175–193 (2015).

    PubMed  PubMed Central  Google Scholar 

  43. YonoverP. et al. Clinical utility study of confirms mdx for prostate cancer in a community urology practice. J. Clin. Oncol. 37 (suppl. 7)Abstr. 94 (2019).

    Article  Google Scholar 

  44. MassieC. E.MillsI. G. & LynchA. G. The importance of DNA methylation in prostate cancer development. J. Steroid Biochem. Mol. Biol. 1661–15 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. YangB. et al. Methylation profiling defines an extensive field defect in histologically normal prostate tissues associated with prostate cancer. Neoplasia 15399–408 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. HenriqueR. et al. Epigenetic heterogeneity of high-grade prostatic intraepithelial neoplasia: clues for clonal progression in prostate carcinogenesis. Mol. Cancer Res. 41–8 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. LongM. D. et al. Dynamic patterns of DNA methylation in the normal prostate epithelial differentiation program are targets of aberrant methylation in prostate cancer. Sci. Rep. 1111405 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. HoulahanK. E. et al. Genome-wide germline correlates of the epigenetic landscape of prostate cancer. Nat. Med. 251615–1626 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. YuanJ. et al. Prostate cancer transcriptomic regulation by the interplay of germline risk allelessomatic mutationsand 3D genomic architecture. Cancer Discov. 122838–2855 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. GerhauserC. et al. Molecular evolution of early-onset prostate cancer identifies molecular risk markers and clinical trajectories. Cancer Cell 34996–1011.e1018 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. ConstancioV.TavaresN. T.HenriqueR.JeronimoC. & LoboJ. MiRNA biomarkers in cancers of the male reproductive system: are we approaching clinical application? Andrology 11651–667 (2023).

    Article  CAS  PubMed  Google Scholar 

  52. MehraR. et al. Overexpression of the long non-coding RNA SChLAP1 independently predicts lethal prostate cancer. Eur. Urol. 70549–552 (2016).

    Article  CAS  PubMed  Google Scholar 

  53. LiuX. et al. Circular RNAs in prostate cancer: biogenesisbiological functionsand clinical significance. Mol. Ther. Nucleic Acids 261130–1147 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. WangX. et al. Identification of differentially expressed circRNAs in prostate cancer of different clinical stages by RNA sequencing. Sci. Rep. 1321175 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. PanC. W. et al. Functional roles of antisense enhancer RNA for promoting prostate cancer progression. Theranostics 111780–1794 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. NakayamaT. et al. Epigenetic regulation of androgen receptor gene expression in human prostate cancers. Lab. Invest. 801789–1796 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. NickersonM. L. et al. TET2 binds the androgen receptor and loss is associated with prostate cancer. Oncogene 362172–2183 (2017).

    Article  CAS  PubMed  Google Scholar 

  58. TakayamaK. I. et al. TET2 repression by androgen hormone regulates global hydroxymethylation status and prostate cancer progression. Nat. Commun. 69219 (2015).

    Google Scholar 

  59. SjostromM. et al. The 5-hydroxymethylcytosine landscape of prostate cancer. Cancer Res. 823888–3902 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. StellooS. et al. Integrative epigenetic taxonomy of primary prostate cancer. Nat. Commun. 94900 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  61. AugelloM. A. et al. CHD1 loss alters AR binding at lineage-specific enhancers and modulates distinct transcriptional programs to drive prostate tumorigenesis. Cancer Cell 35603–617.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. LiH.GigiL. & ZhaoD. CHD1a multifaceted epigenetic remodeler in prostate cancer. Front. Oncol. 131123362 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. BurkhardtL. et al. CHD1 is a 5q21 tumor suppressor required for ERG rearrangement in prostate cancer. Cancer Res. 732795–2805 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. DiossyM. et al. Frequent CHD1 deletions in prostate cancers of African American men is associated with rapid disease progression. NPJ Precis. Oncol. 8208 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. LiJ. et al. A genomic and epigenomic atlas of prostate cancer in Asian populations. Nature 58093–99 (2020).

    Article  CAS  PubMed  Google Scholar 

  66. SchumacherF. R. et al. Race and genetic alterations in prostate cancer. JCO Precis. Oncol. 5PO.21.00324 (2021).

    PubMed  PubMed Central  Google Scholar 

  67. MitchellT. & NealD. E. The genomic evolution of human prostate cancer. Br. J. Cancer 113193–198 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. SinghalU. et al. Integrative multi-region molecular profiling of primary prostate cancer in men with synchronous lymph node metastasis. Nat. Commun. 154341 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. CarmK. T. et al. Somatic mutations reveal complex metastatic seeding from multifocal primary prostate cancer. Int. J. Cancer 152945–951 (2023).

    Article  CAS  PubMed  Google Scholar 

  70. GeR. et al. Epigenetic modulations and lineage plasticity in advanced prostate cancer. Ann. Oncol. 31470–479 (2020).

    Article  CAS  PubMed  Google Scholar 

  71. ZhaoS. G. et al. The DNA methylation landscape of advanced prostate cancer. Nat. Genet. 52778–789 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. ZhangY. et al. CircRNA circ_0006156 inhibits the metastasis of prostate cancer by blocking the ubiquitination of S100A9. Cancer Gene Ther. 291731–1741 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. LiuC. et al. MicroRNA-141 suppresses prostate cancer stem cells and metastasis by targeting a cohort of pro-metastasis genes. Nat. Commun. 814270 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. GotoY. et al. MicroRNA expression signature of castration-resistant prostate cancer: the microRNA-221/222 cluster functions as a tumour suppressor and disease progression marker. Br. J. Cancer 1131055–1065 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. TangF. et al. Chromatin profiles classify castration-resistant prostate cancers suggesting therapeutic targets. Science 376eabe1505 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. ChandrasekarT.YangJ. C.GaoA. C. & EvansC. P. Mechanisms of resistance in castration-resistant prostate cancer (CRPC). Transl. Androl. Urol. 4365 (2015).

    PubMed  PubMed Central  Google Scholar 

  77. KinoshitaH. et al. Methylation of the androgen receptor minimal promoter silences transcription in human prostate cancer. Cancer Res. 603623–3630 (2000).

    CAS  PubMed  Google Scholar 

  78. YlitaloE. B. et al. A novel DNA methylation signature is associated with androgen receptor activity and patient prognosis in bone metastatic prostate cancer. Clin. Epigenetics 13133 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. PomerantzM. M. et al. Prostate cancer reactivates developmental epigenomic programs during metastatic progression. Nat. Genet. 52790–799 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. LiangY. et al. LSD1-mediated epigenetic reprogramming drives CENPE expression and prostate cancer progression. Cancer Res. 775479–5490 (2017).

    Article  CAS  PubMed  Google Scholar 

  81. GaoS. et al. Chromatin binding of FOXA1 is promoted by LSD1-mediated demethylation in prostate cancer. Nat. Genet. 521011–1017 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. KojimaS.GotoY. & NayaY. The roles of microRNAs in the progression of castration-resistant prostate cancer. J. Hum. Genet. 6225–31 (2017).

    Article  CAS  PubMed  Google Scholar 

  83. GanJ. et al. MicroRNA-375 is a therapeutic target for castration-resistant prostate cancer through the PTPN4/STAT3 axis. Exp. Mol. Med. 541290–1305 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. BaratchianM. et al. H3K9 methylation drives resistance to androgen receptor–antagonist therapy in prostate cancer. Proc. Natl Acad. Sci. USA 119e2114324119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. SaraçH. et al. Systematic characterization of chromatin modifying enzymes identifies KDM3B as a critical regulator in castration resistant prostate cancer. Oncogene 392187–2201 (2020).

    Article  PubMed  Google Scholar 

  86. ZhangZ. et al. Loss of CHD1 promotes heterogeneous mechanisms of resistance to AR-targeted therapy via chromatin dysregulation. Cancer Cell 37584–598.e11 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. DuanL. et al. Histone lysine demethylase KDM4B regulates the alternative splicing of the androgen receptor in response to androgen deprivation. Nucleic Acids Res. 4711623–11636 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. NguyenT. et al. Histone H2A Lys130 acetylation epigenetically regulates androgen production in prostate cancer. Nat. Commun. 143357 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. MetzgerE. et al. KMT9 monomethylates histone H4 lysine 12 and controls proliferation of prostate cancer cells. Nat. Struct. Mol. Biol. 26361–371 (2019).

    Article  CAS  PubMed  Google Scholar 

  90. ZhaoY. et al. Activation of P-TEFb by androgen receptor-regulated enhancer RNAs in castration-resistant prostate cancer. Cell Rep. 15599–610 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. YaoY. et al. Extrachromosomal circular DNA-related SPOCK1 contributes to development and enzalutamide resistance of prostate cancer by regulating epithelial mesenchymal transition. Heliyon 10e37075 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. ZhuY.GongL. & WeiC. L. Guilt by association: EcDNA as a mobile transactivator in cancer. Trends Cancer 8747–758 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. ZhuY. et al. Oncogenic extrachromosomal DNA functions as mobile enhancers to globally amplify chromosomal transcription. Cancer Cell 39694–707.e7 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Macedo-SilvaC. et al. Epigenetic mechanisms underlying prostate cancer radioresistance. Clin. Epigenetics 13125 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. KhuntiaD.ReddyC. A.MahadevanA.KleinE. A. & KupelianP. A. Recurrence-free survival rates after external-beam radiotherapy for patients with clinical T1–T3 prostate carcinoma in the prostate-specific antigen era: what should we expect? Cancer 1001283–1292 (2004).

    Article  PubMed  Google Scholar 

  96. PeitzschC. et al. An epigenetic reprogramming strategy to resensitize radioresistant prostate cancer cells. Cancer Res. 762637–2651 (2016).

    Article  CAS  PubMed  Google Scholar 

  97. StoneL. Prostate cancer: radiotherapy induces epigenetic changes. Nat. Rev. Urol. 13241 (2016).

    Article  PubMed  Google Scholar 

  98. BayoJ. et al. Jumonji inhibitors overcome radioresistance in cancer through changes in H3K4 methylation at double-strand breaks. Cell Rep. 251040–1050.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. FanL. et al. Histone demethylase JMJD1A promotes expression of DNA repair factors and radio-resistance of prostate cancer cells. Cell Death Dis. 11214 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Macedo-SilvaC. et al. Epigenetic regulation of TP53 is involved in prostate cancer radioresistance and DNA damage response signaling. Signal. Transduct. Target. Ther. 8395 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. LiX. et al. BRD4 promotes DNA repair and mediates the formation of TMPRSS2-ERG gene rearrangements in prostate cancer. Cell Rep. 22796–808 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. KomuraK. et al. Resistance to docetaxel in prostate cancer is associated with androgen receptor activation and loss of KDM5D expression. Proc. Natl Acad. Sci. USA 1136259–6264 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. LiuJ. et al. p300/CBP inhibition enhances the efficacy of programmed death-ligand 1 blockade treatment in prostate cancer. Oncogene 393939–3951 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. RodemsT. S. et al. Reversible epigenetic alterations regulate class I HLA loss in prostate cancer. Commun. Biol. 5897 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. StultzJ. & FongL. How to turn up the heat on the cold immune microenvironment of metastatic prostate cancer. Prostate Cancer Prostatic Dis. 24697–717 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. DaviesA.ZoubeidiA. & SelthL. A. The epigenetic and transcriptional landscape of neuroendocrine prostate cancer. Endocr. Relat. Cancer 27R35–R50 (2020).

    Article  CAS  PubMed  Google Scholar 

  107. ChakrabortyG.GuptaK. & KyprianouN. Epigenetic mechanisms underlying subtype heterogeneity and tumor recurrence in prostate cancer. Nat. Commun. 14567 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. BeltranH. et al. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat. Med. 22298–305 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. CejasP. et al. Subtype heterogeneity and epigenetic convergence in neuroendocrine prostate cancer. Nat. Commun. 125775 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. BeltranH. et al. Circulating tumor DNA profile recognizes transformation to castration-resistant neuroendocrine prostate cancer. J. Clin. Invest. 1301653–1668 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  111. VaramballyS. et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419624–629 (2002).

    Article  CAS  PubMed  Google Scholar 

  112. LoboJ. et al. High immunoexpression of Ki67EZH2and SMYD3 in diagnostic prostate biopsies independently predicts outcome in patients with prostate cancer. Urol. Oncol. 36161.e7–161.e17 (2018).

    Article  CAS  PubMed  Google Scholar 

  113. BeltranH. et al. The role of lineage plasticity in prostate cancer therapy resistance. Clin. Cancer Res. 256916–6924 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. DardenneE. et al. N-Myc induces an EZH2-mediated transcriptional program driving neuroendocrine prostate cancer. Cancer Cell 30563–577 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. KuS. Y. et al. Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticitymetastasisand antiandrogen resistance. Science 35578–83 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. CyrtaJ. et al. Role of specialized composition of SWI/SNF complexes in prostate cancer lineage plasticity. Nat. Commun. 115549 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. AkotoT.BhagirathD. & SainiS. MicroRNAs in treatment-induced neuroendocrine differentiation in prostate cancer. Cancer Drug. Resist. 3804–818 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. IvanovY. D. et al. Nanoribbon biosensor-based detection of microRNA markers of prostate cancer. Sensors 237527 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. RebelloR. J. et al. Prostate cancer. Nat. Rev. Dis. Prim. 79 (2021).

    Article  PubMed  Google Scholar 

  120. ConstâncioV.Barros-SilvaD.JerónimoC. & HenriqueR. Known epigenetic biomarkers for prostate cancer detection and management: exploring the potential of blood-based liquid biopsies. Expert Rev. Mol. Diagn. 19367–375 (2019).

    Article  PubMed  Google Scholar 

  121. RagaviR. et al. Epigenetics regulation of prostate cancer: biomarker and therapeutic potential. Urol. Oncol. 41340–353 (2023).

    Article  CAS  PubMed  Google Scholar 

  122. YangY.ZhangM. & WangY. The roles of histone modifications in tumorigenesis and associated inhibitors in cancer therapy. J. Natl Cancer Cent. 2277–290 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  123. VatapalliR. et al. Histone methyltransferase DOT1L coordinates AR and MYC stability in prostate cancer. Nat. Commun. 114153 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. CaiC. et al. Lysine-specific demethylase 1 has dual functions as a major regulator of androgen receptor transcriptional activity. Cell Rep. 91618–1627 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. FanL. et al. Histone demethylase JMJD1A promotes alternative splicing of AR variant 7 (AR-V7) in prostate cancer cells. Proc. Natl Acad. Sci. USA 115E4584–E4593 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. HargreavesD. C. Chromatin openness requires continuous SWI/SNF activity. Nat. Genet. 53263–264 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. KukkonenK. et al. Chromatin and epigenetic dysregulation of prostate cancer developmentprogressionand therapeutic response. Cancers 133325 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. DingY. et al. Chromatin remodeling ATPase BRG1 and PTEN are synthetic lethal in prostate cancer. J. Clin. Invest. 129759–773 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  129. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02366494 (2024).

  130. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02964351 (2016).

  131. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03494803 (2023).

  132. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03911999 (2021).

  133. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04100811 (2023).

  134. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05141383 (2024).

  135. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05443412 (2024).

  136. NorgaardM. et al. Comprehensive evaluation of TFF3 promoter hypomethylation and molecular biomarker potential for prostate cancer diagnosis and prognosis. Int. J. Mol. Sci. 182017 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  137. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00340717 (2008).

  138. FianoV. et al. DNA methylation in repeat negative prostate biopsies as a marker of missed prostate cancer. Clin. Epigenetics 11152 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  139. ConstancioV. et al. Early detection of the major male cancer types in blood-based liquid biopsies using a DNA methylation panel. Clin. Epigenetics 11175 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. StewartG. D. et al. Clinical utility of an epigenetic assay to detect occult prostate cancer in histopathologically negative biopsies: results of the MATLOC study. J. Urol. 1891110–1116 (2013).

    Article  PubMed  Google Scholar 

  141. HaldrupC. et al. Biomarker potential of ST6GALNAC3 and ZNF660 promoter hypermethylation in prostate cancer tissue and liquid biopsies. Mol. Oncol. 12545–560 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. YangB. et al. Validation of an epigenetic field of susceptibility to detect significant prostate cancer from non-tumor biopsies. Clin. Epigenetics 11168 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. FranceschiniG. M. et al. Noninvasive detection of neuroendocrine prostate cancer through targeted cell-free DNA methylation. Cancer Discov. 14424–445 (2024).

    Article  CAS  PubMed  Google Scholar 

  144. ZhaoF. et al. A urine-based DNA methylation assayProCUrEto identify clinically significant prostate cancer. Clin. Epigenetics 10147 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. AvetaA. et al. Urinary MicroRNAs as biomarkers of urological cancers: a systematic review. Int. J. Mol. Sci. 2410846 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. CuiM. et al. Circulating microRNAs in cancer: potential and challenge. Front. Genet. 10626 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. SequeiraJ. P. et al. OncoUroMiR: circulating miRNAs for detection and discrimination of the main urological cancers using a ddPCR-based approach. Int. J. Mol. Sci. 2413890 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. BidarraD. et al. Circulating microRNAs as biomarkers for prostate cancer detection and metastasis development prediction. Front. Oncol. 9900 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  149. UrabeF. et al. Large-scale circulating microRNA profiling for the liquid biopsy of prostate cancer. Clin. Cancer Res. 253016–3025 (2019).

    Article  CAS  PubMed  Google Scholar 

  150. SunC. et al. The value of a panel of circulating microRNAs in screening prostate cancer. Transl. Cancer Res. 13686–698 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. FredsøeJ. et al. Independent validation of a diagnostic noninvasive 3-microRNA ratio model (uCaP) for prostate cancer in cell-free urine. Clin. Chem. 65540–548 (2019).

    Article  PubMed  Google Scholar 

  152. BarceloM.CastellsM.BassasL.ViguesF. & LarribaS. Semen miRNAs contained in exosomes as non-invasive biomarkers for prostate cancer diagnosis. Sci. Rep. 913772 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  153. WangW. W. et al. Expression of small noncoding RNAs in urinary exosomes classifies prostate cancer into indolent and aggressive disease. J. Urol. 204466–475 (2020).

    Article  PubMed  Google Scholar 

  154. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04661176 (2023).

  155. SouzaM. F. et al. Circulating mRNAs and miRNAs as candidate markers for the diagnosis and prognosis of prostate cancer. PLoS ONE 12e0184094 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  156. BermanD. M. et al. Multimodal biomarkers that predict the presence of Gleason pattern 4: potential impact for active surveillance. J. Urol. 210257–271 (2023).

    Article  CAS  PubMed  Google Scholar 

  157. BakaviciusA. et al. Urinary DNA methylation biomarkers for prediction of prostate cancer upgrading and upstaging. Clin. Epigenetics 11115 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  158. BacaS. C. et al. Liquid biopsy epigenomic profiling for cancer subtyping. Nat. Med. 292737–2741 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. SequeiraJ. P. et al. Biomarkers for pre-treatment risk stratification of prostate cancer patients: a systematic review. Cancers 161363 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Van LeendersG. J. et al. The 2019 International Society of Urological Pathology (ISUP) consensus conference on grading of prostatic carcinoma. Am. J. Surg. Pathol. 44e87–e99 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  161. KontosC. K.AdamopoulosP. G. & ScorilasA. Prognostic and predictive biomarkers in prostate cancer. Expert Rev. Mol. Diagn. 151567–1576 (2015).

    Article  CAS  PubMed  Google Scholar 

  162. SteinJ. et al. KDM5C is overexpressed in prostate cancer and is a prognostic marker for prostate-specific antigen-relapse following radical prostatectomy. Am. J. Pathol. 1842430–2437 (2014).

    Article  CAS  PubMed  Google Scholar 

  163. SchagdarsurenginU. et al. Tracing TET1 expression in prostate cancer: discovery of malignant cells with a distinct oncogenic signature. Clin. Epigenetics 13211 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. MellerS. et al. CDO1 promoter methylation is associated with gene silencing and is a prognostic biomarker for biochemical recurrence-free survival in prostate cancer patients. Epigenetics 11871–880 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  165. LiK. et al. Manipulation of prostate cancer metastasis by locus-specific modification of the CRMP4 promoter region using chimeric TALE DNA methyltransferase and demethylase. Oncotarget 610030–10044 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  166. UhlB. et al. PITX2 DNA methylation as biomarker for individualized risk assessment of prostate cancer in core biopsies. J. Mol. Diagn. 19107–114 (2017).

    Article  CAS  PubMed  Google Scholar 

  167. NorgaardM. et al. Epigenetic silencing of MEIS2 in prostate cancer recurrence. Clin. Epigenetics 11147 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  168. HanY.XuJ.KimJ.WuX. & GuJ. Methylation of subtelomeric repeat D4Z4 in peripheral blood leukocytes is associated with biochemical recurrence in localized prostate cancer patients. Carcinogenesis 38821–826 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. LitovkinK. et al. DNA methylation-guided prediction of clinical failure in high-risk prostate cancer. PLoS ONE 10e0130651 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  170. StrandS. H. et al. A novel combined miRNA and methylation marker panel (miMe) for prediction of prostate cancer outcome after radical prostatectomy. Int. J. Cancer 1453445–3452 (2019).

    Article  CAS  PubMed  Google Scholar 

  171. NamR. K. et al. MiR-301a regulates E-cadherin expression and is predictive of prostate cancer recurrence. Prostate 76869–884 (2016).

    Article  CAS  PubMed  Google Scholar 

  172. KimM. Y. et al. Urinary exosomal microRNA profiling in intermediate-risk prostate cancer. Sci. Rep. 117355 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. HuangX. et al. Exosomal miR-1290 and miR-375 as prognostic markers in castration-resistant prostate cancer. Eur. Urol. 6733–41 (2015).

    Article  CAS  PubMed  Google Scholar 

  174. TaoW. et al. A urine extracellular vesicle lncRNA classifier for high-grade prostate cancer and increased risk of progression: a multi-center study. Cell Rep. Med. 4101240 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. LykoF. The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nat. Rev. Genet. 1981–92 (2018).

    Article  CAS  PubMed  Google Scholar 

  176. SonpavdeG. et al. Azacitidine favorably modulates PSA kinetics correlating with plasma DNA LINE-1 hypomethylation in men with chemonaive castration-resistant prostate cancer. Urol. Oncol. 29682–689 (2011).

    Article  CAS  PubMed  Google Scholar 

  177. SingalR. et al. Phase I/II study of azacitidinedocetaxeland prednisone in patients with metastatic castration-resistant prostate cancer previously treated with docetaxel-based therapy. Clin. Genitourin. Cancer 1322–31 (2015).

    Article  PubMed  Google Scholar 

  178. GuoH. et al. DNA hypomethylation silences anti-tumor immune genes in early prostate cancer and CTCs. Cell 1862765–2782 e2728 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. TopperM. J.VazM.MarroneK. A.BrahmerJ. R. & BaylinS. B. The emerging role of epigenetic therapeutics in immuno-oncology. Nat. Rev. Clin. Oncol. 1775–90 (2020).

    Article  PubMed  Google Scholar 

  180. GhoneimH. E. et al. De novo epigenetic programs inhibit PD-1 blockade-mediated T cell rejuvenation. Cell 170142–157.e19 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Papadatos-PastosD. et al. Phase 1dose-escalation study of guadecitabine (SGI-110) in combination with pembrolizumab in patients with solid tumors. J. Immunother. Cancer 10e004495 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  182. FarahE. et al. Targeting DNMTs to overcome enzalutamide resistance in prostate cancer. Mol. Cancer Ther. 21193–205 (2022).

    Article  CAS  PubMed  Google Scholar 

  183. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05037500 (2024).

  184. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03709550 (2022).

  185. ParkS. Y. & KimJ. S. A short guide to histone deacetylases including recent progress on class II enzymes. Exp. Mol. Med. 52204–212 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. WelsbieD. S. et al. Histone deacetylases are required for androgen receptor function in hormone-sensitive and castrate-resistant prostate cancer. Cancer Res. 69958–966 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. MolifeL. R. et al. Phase IItwo-stagesingle-arm trial of the histone deacetylase inhibitor (HDACi) romidepsin in metastatic castration-resistant prostate cancer (CRPC). Ann. Oncol. 21109–113 (2010).

    Article  CAS  PubMed  Google Scholar 

  188. RathkopfD. E. et al. A phase 2 study of intravenous panobinostat in patients with castration-resistant prostate cancer. Cancer Chemother. Pharmacol. 72537–544 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. EiglB. J. et al. A phase II study of the HDAC inhibitor SB939 in patients with castration resistant prostate cancer: NCIC clinical trials group study IND195. Invest. New Drugs 33969–976 (2015).

    Article  CAS  PubMed  Google Scholar 

  190. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04703920 (2024).

  191. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT06145633 (2024).

  192. FerrariA. C. et al. Epigenetic therapy with panobinostat combined with bicalutamide rechallenge in castration-resistant prostate cancer. Clin. Cancer Res. 2552–63 (2019).

    Article  CAS  PubMed  Google Scholar 

  193. FuM. et al. p300 and p300/cAMP-response element-binding protein-associated factor acetylate the androgen receptor at sites governing hormone-dependent transactivation. J. Biol. Chem. 27520853–20860 (2000).

    Article  CAS  PubMed  Google Scholar 

  194. JinL. et al. Therapeutic targeting of the CBP/p300 bromodomain blocks the growth of castration-resistant prostate cancer. Cancer Res. 775564–5575 (2017).

    Article  CAS  PubMed  Google Scholar 

  195. WeltiJ. et al. Targeting the p300/CBP axis in lethal prostate cancer. Cancer Discov. 111118–1137 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03568656 (2024).

  197. ChooN. et al. Co-targeting BETCBPand p300 inhibits neuroendocrine signalling in androgen receptor-null prostate cancer. J. Pathol. 263242–256 (2024).

    Article  CAS  PubMed  Google Scholar 

  198. ParkS. H. et al. Going beyond Polycomb: EZH2 functions in prostate cancer. Oncogene 405788–5798 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. WangY. et al. Molecular events in neuroendocrine prostate cancer development. Nat. Rev. Urol. 18581–596 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  200. GroisbergR. & SubbiahV. EZH2 inhibition for epithelioid sarcoma and follicular lymphoma. Lancet Oncol. 211388–1390 (2020).

    Article  CAS  PubMed  Google Scholar 

  201. MorgansA. K. et al. ESMO Congress abstracts. Genitourinary tumoursprostate. Ann. Oncol. 32 (Suppl. 5)S626–S677 (2021).

    Google Scholar 

  202. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04179864 (2024).

  203. ZhaoJ. C. et al. Cooperation between Polycomb and androgen receptor during oncogenic transformation. Genome Res. 22322–331 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. XuK. et al. EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent. Science 3381465–1469 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. VenkadakrishnanV. B. et al. Lineage-specific canonical and non-canonical activity of EZH2 in advanced prostate cancer subtypes. Preprint at Res. Sq. https://doi.org/10.21203/rs.3.rs-3935288/v2 (2024).

  206. PerilloB.TramontanoA.PezoneA. & MigliaccioA. LSD1: more than demethylation of histone lysine residues. Exp. Mol. Med. 521936–1947 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. HollebecqueA. et al. Clinical activity of CC-90011an oralpotentand reversible LSD1 inhibitorin advanced malignancies. Cancer 1283185–3195 (2022).

    Article  CAS  PubMed  Google Scholar 

  208. WangZ. Q. et al. Bromodomain and extraterminal (BET) proteins: biological functionsdiseasesand targeted therapy. Signal. Transduct. Target. Ther. 8420 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Piha-PaulS. A. et al. First-in-human study of mivebresib (ABBV-075)an oral pan-inhibitor of bromodomain and extra terminal proteinsin patients with relapsed/refractory solid tumors. Clin. Cancer Res. 256309–6319 (2019).

    Article  CAS  PubMed  Google Scholar 

  210. FalchookG. et al. Development of 2 bromodomain and extraterminal inhibitors with distinct pharmacokinetic and pharmacodynamic profiles for the treatment of advanced malignancies. Clin. Cancer Res. 261247–1257 (2020).

    Article  CAS  PubMed  Google Scholar 

  211. AttwellS. et al. Preclinical characterization of ZEN-3694a novel BET bromodomain inhibitor entering phase I studies for metastatic castration-resistant prostate cancer (mCRPC). Cancer Res. 76https://doi.org/10.1158/1538-7445.AM2016-LB-207 (2016).

  212. AggarwalR. R. et al. A phase Ib/IIa study of the Pan-BET inhibitor ZEN-3694 in combination with enzalutamide in patients with metastatic castration-resistant prostate cancer. Clin. Cancer Res. 265338–5347 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. MorelD.JefferyD.AspeslaghS.AlmouzniG. & Postel-VinayS. Combining epigenetic drugs with other therapies for solid tumours — past lessons and future promise. Nat. Rev. Clin. Oncol. 1791–107 (2020).

    Article  CAS  PubMed  Google Scholar 

  214. PachecoM. B.CamiloV.HenriqueR. & JeronimoC. Epigenetic editing in prostate cancer: challenges and opportunities. Epigenetics 17564–588 (2022).

    Article  PubMed  Google Scholar 

  215. MaA. et al. Discovery of a first-in-class EZH2 selective degrader. Nat. Chem. Biol. 16214–222 (2020).

    Article  CAS  PubMed  Google Scholar 

  216. WangJ. et al. A cryptic transactivation domain of EZH2 binds AR and AR’s splice variantpromoting oncogene activation and tumorous transformation. Nucleic Acids Res. 5010929–10946 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. GuoY. et al. Regulation of EZH2 protein stability: new mechanismsroles in tumorigenesisand roads to the clinic. EBioMedicine 100104972 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. RainaK. et al. PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer. Proc. Natl Acad. Sci. USA 1137124–7129 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. ZhangD. et al. Discovery of a peptide proteolysis-targeting chimera (PROTAC) drug of p300 for prostate cancer therapy. EBioMedicine 105105212 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05252390 (2024).

  221. LewinJ. et al. Phase Ib trial with birabresiba small-molecule inhibitor of bromodomain and extraterminal proteinsin patients with selected advanced solid tumors. J. Clin. Oncol. 363007–3014 (2018).

    Article  CAS  PubMed  Google Scholar 

  222. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02698176 (2021).

  223. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03150056 (2021).

  224. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04556617 (2022).

  225. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02705469 (2017).

  226. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04145375 (2024).

  227. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04471974 (2024).

  228. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04986423 (2024).

  229. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05488548 (2024).

  230. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00006019 (2013).

  231. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00384839 (2018).

  232. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03572387 (2024).

  233. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04104776 (2024).

  234. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04388852 (2024).

  235. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03480646 (2021).

  236. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03460977 (2024).

  237. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03741712 (2021).

  238. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04846478 (2024).

  239. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05567679 (2023).

  240. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT06022757 (2024).

  241. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00413075 (2015).

  242. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00413322 (2015).

  243. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00020579 (2012).

  244. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03829930 (2021).

  245. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00511576 (2015).

  246. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00419536 (2010).

  247. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00493766 (2020).

  248. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00663832 (2020).

  249. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00670553 (2017).

  250. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00106301 (2019).

  251. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00106418 (2019).

  252. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00530907 (2015).

  253. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00670046 (2018).

  254. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00005634 (2013).

  255. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00045006 (2013).

  256. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00330161 (2014).

  257. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00565227 (2016).

  258. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00589472 (2017).

  259. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01174199 (2022).

  260. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04628988 (2023).

  261. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05268666 (2023).

  262. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04575766 (2023).

Download references

Author information

Authors and Affiliations

Authors

Contributions

V.C.J.L. and J.P.S. researched data for the article. All authors contributed substantially to discussion of the content. All authors wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Carmen Jerónimo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks Jindan Yuwho co-reviewed with Jonathan Zhaoand the otheranonymousreviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ConstâncioV.LoboJ.SequeiraJ.P. et al. Prostate cancer epigenetics — from pathophysiology to clinical application. Nat Rev Urol 22447–469 (2025). https://doi.org/10.1038/s41585-024-00991-8

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41585-024-00991-8