×

注意!页面内容来自https://www.numberempire.com/1,本站不储存任何内容,为了更好的阅读体验进行在线解析,若有广告出现,请及时反馈。若您觉得侵犯了您的利益,请通知我们进行删除,然后访问 原网页

Number properties

0 / 12
Number 1
one
<> .number-properties-grid { display: grid; grid-template-columns: 1fr 1fr; gap: 20px; max-width: 1200px; margin: 0 auto; } .number-section { background: #f9f9f9; border-radius: 8px; border: 1px solid #ddd; overflow: hidden; } .section-header { background: #e8e8e8; padding: 12px 16px; font-weight: bold; font-size: 1.1em; color: #333; border-bottom: 1px solid #ddd; } .section-content { padding: 16px; } .property-row { display: flex; justify-content: space-between; align-items: center; padding: 6px 0; border-bottom: 1px dotted #ccc; } .property-row:last-child { border-bottom: none; } .property-label { font-weight: 500; color: #555; flex: 1; text-align: left; } .property-value { font-weight: normal; color: #333; text-align: right; flex: 1; word-break: break-all; } .divisors-toggle { color: #0066cc; text-decoration: none; font-size: 0.9em; cursor: pointer; } .divisors-toggle:hover { text-decoration: underline; } @media (max-width: 768px) { .number-properties-grid { grid-template-columns: 1fr; gap: 15px; } .number-section { min-width: unset; } .property-value { text-align: right; } }
Arithmetic & Divisor Properties
Factorization
Divisors
1
Count of divisors
Sum of divisors
Next integer
Is prime
No
Twin prime
No
Sophie Germain prime
No
Safe prime
No
Mersenne number
Yes (2^1 - 1)
Euler's totient φ(1)
Sum of digits
Digital root
Number Properties
Fibonacci number
Yes F1 and F2
Lucas number
Yes
Tribonacci number
Yes
Tetranacci number
Yes
Pell number
Yes
Highly composite number
Yes
Superior highly composite number
No
Bell number
Yes B0 and B1
Catalan number
Yes C0 and C1
Factorial
Yes 0! and 1!
Regular number
Yes
Perfect number
No
Palindrome
Yes
Polygonal number (s < 11)?
triangular(1)square(1)pentagonal(1)hexagonal(1)heptagonal(1)octagonal(1)nonagonal(1)decagonal(1)
Tetrahedral number
Yes (T1)
Square pyramidal number
Yes (P1)
Cubic number
Yes (1³)
Pronic number
No
Centered polygonal
centered triangular with k=1centered square with k=1centered pentagonal with k=1centered hexagonal with k=1centered heptagonal with k=1centered octagonal with k=1centered nonagonal with k=1centered decagonal with k=1
Number in Different Bases
Binary
1
Hamming weight
1
Ternary
1
Quaternary
1
Quinary
1
Senary
1
Septenary
1
Octal
1
Nonary
1
Decimal
1
Duodecimal
1
Hexadecimal
1
Vigesimal
1
Base 36
1
Base 62
1
Roman
I
Mathematical Functions
Square
Square root
Cube
Cube root
Fourth power
Natural logarithm
0
Decimal logarithm
0
e^n
2.718281828459
2^n
2
10^n
10
Factorial (n!)
1
Double factorial (n!!)
1
Γ(n+1)
1
Sine
0.8414709848079
Cosine
0.54030230586814
Tangent
1.5574077246549
Arcsine
1.5707963267949
Arccosine
0
Properties of the number 1
Number 1 is neither prime nor composite; it is a unit. Number 1 is a Fibonacci number (F1 and F2) and a Lucas number (L1) and a Tribonacci number (T2 and T3) and a Tetranacci number (T3 and T4) and a Pell number (P1) and a highly composite number and a Bell number (B0 and B1) and a Catalan number (C0 and C1) and a factorial (0! and 1!) and a triangular number with n=1 and a square number with n=1 and a pentagonal number with n=1 and a hexagonal number with n=1 and a heptagonal number with n=1 and a octagonal number with n=1 and a nonagonal number with n=1 and a decagonal number with n=1. Number 1 has the same representation in all common number bases: 1. Roman numeral: I. Mathematical properties: square = 1square root = 1natural logarithm = 0decimal logarithm = 0. Trigonometric functions: sine = 0.8414709848079cosine = 0.54030230586814tangent = 1.5574077246549.

Calculus and Real Analysis


Algebra


🔢 Linear Algebra


🧮 Number Theory and Discrete Math


📊 Statistics and Probability


📐 Geometry


Arithmetic and Number Systems


🧪 Chemistry


Number properties

0 / 12
Examples: 3628800, 9876543211, 12586269025